Static Timing Analysis for Nanometer Designs

Static Timing Analysis for Nanometer Designs
Author: J. Bhasker
Publisher: Springer Science & Business Media
Total Pages: 588
Release: 2009-04-03
Genre: Technology & Engineering
ISBN: 0387938206

iming, timing, timing! That is the main concern of a digital designer charged with designing a semiconductor chip. What is it, how is it T described, and how does one verify it? The design team of a large digital design may spend months architecting and iterating the design to achieve the required timing target. Besides functional verification, the t- ing closure is the major milestone which dictates when a chip can be - leased to the semiconductor foundry for fabrication. This book addresses the timing verification using static timing analysis for nanometer designs. The book has originated from many years of our working in the area of timing verification for complex nanometer designs. We have come across many design engineers trying to learn the background and various aspects of static timing analysis. Unfortunately, there is no book currently ava- able that can be used by a working engineer to get acquainted with the - tails of static timing analysis. The chip designers lack a central reference for information on timing, that covers the basics to the advanced timing veri- cation procedures and techniques.

Constraining Designs for Synthesis and Timing Analysis

Constraining Designs for Synthesis and Timing Analysis
Author: Sridhar Gangadharan
Publisher: Springer Science & Business Media
Total Pages: 245
Release: 2014-07-08
Genre: Technology & Engineering
ISBN: 1461432693

This book serves as a hands-on guide to timing constraints in integrated circuit design. Readers will learn to maximize performance of their IC designs, by specifying timing requirements correctly. Coverage includes key aspects of the design flow impacted by timing constraints, including synthesis, static timing analysis and placement and routing. Concepts needed for specifying timing requirements are explained in detail and then applied to specific stages in the design flow, all within the context of Synopsys Design Constraints (SDC), the industry-leading format for specifying constraints.

Flip-Flop Design in Nanometer CMOS

Flip-Flop Design in Nanometer CMOS
Author: Massimo Alioto
Publisher: Springer
Total Pages: 268
Release: 2014-10-14
Genre: Technology & Engineering
ISBN: 331901997X

This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gain an insight into the inter-dependence of design parameters under practical constraints. This book serves as a valuable reference for practicing engineers working in the VLSI design area, and as text book for senior undergraduate, graduate and postgraduate students (already familiar with digital circuits and timing).

VLSI Physical Design: From Graph Partitioning to Timing Closure

VLSI Physical Design: From Graph Partitioning to Timing Closure
Author: Andrew B. Kahng
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 2011-01-27
Genre: Technology & Engineering
ISBN: 9048195918

Design and optimization of integrated circuits are essential to the creation of new semiconductor chips, and physical optimizations are becoming more prominent as a result of semiconductor scaling. Modern chip design has become so complex that it is largely performed by specialized software, which is frequently updated to address advances in semiconductor technologies and increased problem complexities. A user of such software needs a high-level understanding of the underlying mathematical models and algorithms. On the other hand, a developer of such software must have a keen understanding of computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. "VLSI Physical Design: From Graph Partitioning to Timing Closure" introduces and compares algorithms that are used during the physical design phase of integrated-circuit design, wherein a geometric chip layout is produced starting from an abstract circuit design. The emphasis is on essential and fundamental techniques, ranging from hypergraph partitioning and circuit placement to timing closure.

An ASIC Low Power Primer

An ASIC Low Power Primer
Author: Rakesh Chadha
Publisher: Springer Science & Business Media
Total Pages: 226
Release: 2012-12-05
Genre: Technology & Engineering
ISBN: 1461442710

This book provides an invaluable primer on the techniques utilized in the design of low power digital semiconductor devices. Readers will benefit from the hands-on approach which starts form the ground-up, explaining with basic examples what power is, how it is measured and how it impacts on the design process of application-specific integrated circuits (ASICs). The authors use both the Unified Power Format (UPF) and Common Power Format (CPF) to describe in detail the power intent for an ASIC and then guide readers through a variety of architectural and implementation techniques that will help meet the power intent. From analyzing system power consumption, to techniques that can be employed in a low power design, to a detailed description of two alternate standards for capturing the power directives at various phases of the design, this book is filled with information that will give ASIC designers a competitive edge in low-power design.

Nanometer CMOS ICs

Nanometer CMOS ICs
Author: Harry Veendrick
Publisher: Springer Nature
Total Pages: 697
Release:
Genre:
ISBN: 303164249X

VLSI Test Principles and Architectures

VLSI Test Principles and Architectures
Author: Laung-Terng Wang
Publisher: Elsevier
Total Pages: 809
Release: 2006-08-14
Genre: Technology & Engineering
ISBN: 0080474799

This book is a comprehensive guide to new DFT methods that will show the readers how to design a testable and quality product, drive down test cost, improve product quality and yield, and speed up time-to-market and time-to-volume. - Most up-to-date coverage of design for testability. - Coverage of industry practices commonly found in commercial DFT tools but not discussed in other books. - Numerous, practical examples in each chapter illustrating basic VLSI test principles and DFT architectures.

The Design Warrior's Guide to FPGAs

The Design Warrior's Guide to FPGAs
Author: Clive Maxfield
Publisher: Elsevier
Total Pages: 561
Release: 2004-06-16
Genre: Technology & Engineering
ISBN: 0080477135

Field Programmable Gate Arrays (FPGAs) are devices that provide a fast, low-cost way for embedded system designers to customize products and deliver new versions with upgraded features, because they can handle very complicated functions, and be reconfigured an infinite number of times. In addition to introducing the various architectural features available in the latest generation of FPGAs, The Design Warrior's Guide to FPGAs also covers different design tools and flows.This book covers information ranging from schematic-driven entry, through traditional HDL/RTL-based simulation and logic synthesis, all the way up to the current state-of-the-art in pure C/C++ design capture and synthesis technology. Also discussed are specialist areas such as mixed hardward/software and DSP-based design flows, along with innovative new devices such as field programmable node arrays (FPNAs). Clive "Max" Maxfield is a bestselling author and engineer with a large following in the electronic design automation (EDA)and embedded systems industry. In this comprehensive book, he covers all the issues of interest to designers working with, or contemplating a move to, FPGAs in their product designs. While other books cover fragments of FPGA technology or applications this is the first to focus exclusively and comprehensively on FPGA use for embedded systems. - First book to focus exclusively and comprehensively on FPGA use in embedded designs - World-renowned best-selling author - Will help engineers get familiar and succeed with this new technology by providing much-needed advice on choosing the right FPGA for any design project

Design and Modeling of Low Power VLSI Systems

Design and Modeling of Low Power VLSI Systems
Author: Sharma, Manoj
Publisher: IGI Global
Total Pages: 423
Release: 2016-06-06
Genre: Technology & Engineering
ISBN: 1522501916

Very Large Scale Integration (VLSI) Systems refer to the latest development in computer microchips which are created by integrating hundreds of thousands of transistors into one chip. Emerging research in this area has the potential to uncover further applications for VSLI technologies in addition to system advancements. Design and Modeling of Low Power VLSI Systems analyzes various traditional and modern low power techniques for integrated circuit design in addition to the limiting factors of existing techniques and methods for optimization. Through a research-based discussion of the technicalities involved in the VLSI hardware development process cycle, this book is a useful resource for researchers, engineers, and graduate-level students in computer science and engineering.