Statistical Methods for the Social and Behavioural Sciences

Statistical Methods for the Social and Behavioural Sciences
Author: David B. Flora
Publisher: SAGE
Total Pages: 786
Release: 2017-12-11
Genre: Social Science
ISBN: 1526421925

Statistical methods in modern research increasingly entail developing, estimating and testing models for data. Rather than rigid methods of data analysis, the need today is for more flexible methods for modelling data. In this logical, easy-to-follow and exceptionally clear book, David Flora provides a comprehensive survey of the major statistical procedures currently used. His innovative model-based approach teaches you how to: Understand and choose the right statistical model to fit your data Match substantive theory and statistical models Apply statistical procedures hands-on, with example data analyses Develop and use graphs to understand data and fit models to data Work with statistical modeling principles using any software package Learn by applying, with input and output files for R, SAS, SPSS, and Mplus. Statistical Methods for the Social and Behavioural Sciences: A Model Based Approach is the essential guide for those looking to extend their understanding of the principles of statistics, and begin using the right statistical modeling method for their own data. It is particularly suited to second or advanced courses in statistical methods across the social and behavioural sciences.

Modern Statistics for the Social and Behavioral Sciences

Modern Statistics for the Social and Behavioral Sciences
Author: Rand Wilcox
Publisher: CRC Press
Total Pages: 862
Release: 2011-08-05
Genre: Mathematics
ISBN: 1439834563

In addition to learning how to apply classic statistical methods, students need to understand when these methods perform well, and when and why they can be highly unsatisfactory. Modern Statistics for the Social and Behavioral Sciences illustrates how to use R to apply both standard and modern methods to correct known problems with classic techniques. Numerous illustrations provide a conceptual basis for understanding why practical problems with classic methods were missed for so many years, and why modern techniques have practical value. Designed for a two-semester, introductory course for graduate students in the social sciences, this text introduces three major advances in the field: Early studies seemed to suggest that normality can be assumed with relatively small sample sizes due to the central limit theorem. However, crucial issues were missed. Vastly improved methods are now available for dealing with non-normality. The impact of outliers and heavy-tailed distributions on power and our ability to obtain an accurate assessment of how groups differ and variables are related is a practical concern when using standard techniques, regardless of how large the sample size might be. Methods for dealing with this insight are described. The deleterious effects of heteroscedasticity on conventional ANOVA and regression methods are much more serious than once thought. Effective techniques for dealing heteroscedasticity are described and illustrated. Requiring no prior training in statistics, Modern Statistics for the Social and Behavioral Sciences provides a graduate-level introduction to basic, routinely used statistical techniques relevant to the social and behavioral sciences. It describes and illustrates methods developed during the last half century that deal with known problems associated with classic techniques. Espousing the view that no single method is always best, it imparts a general understanding of the relative merits of various techniques so that the choice of method can be made in an informed manner.

Experiment Design and Statistical Methods For Behavioural and Social Research

Experiment Design and Statistical Methods For Behavioural and Social Research
Author: David R. Boniface
Publisher: Routledge
Total Pages: 276
Release: 2019-05-20
Genre: Mathematics
ISBN: 135144929X

Experiment Design and Statistical Methods introduces the concepts, principles, and techniques for carrying out a practical research project either in real world settings or laboratories - relevant to studies in psychology, education, life sciences, social sciences, medicine, and occupational and management research. The text covers: repeated measures unbalanced and non-randomized experiments and surveys choice of design adjustment for confounding variables model building and partition of variance covariance multiple regression Experiment Design and Statistical Methods contains a unique extension of the Venn diagram for understanding non-orthogonal design, and it includes exercises for developing the reader's confidence and competence. The book also examines advanced techniques for users of computer packages or data analysis, such as Minitab, SPSS, SAS, SuperANOVA, Statistica, BMPD, SYSTAT, Genstat, and GLIM.

Essentials of Statistics for the Social and Behavioral Sciences

Essentials of Statistics for the Social and Behavioral Sciences
Author: Barry H. Cohen
Publisher: John Wiley & Sons
Total Pages: 312
Release: 2004
Genre: Psychology
ISBN:

Summarizing the material ordinarily covered in an introductory statistics course, this handbook introduces basic concepts and statistical methods. It also offers practical advice concerning the selection of procedures, demonstrates the means of evaluating and interpreting data, provides numerous formulas, and supplies a variety of worked examples. The authors teach psychology at New York University and Macalester College. Annotation ♭2004 Book News, Inc., Portland, OR (booknews.com).

Handbook of Statistical Modeling for the Social and Behavioral Sciences

Handbook of Statistical Modeling for the Social and Behavioral Sciences
Author: G. Arminger
Publisher: Springer Science & Business Media
Total Pages: 603
Release: 2013-06-29
Genre: Psychology
ISBN: 1489912924

Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.

Statistical Power Analysis for the Behavioral Sciences

Statistical Power Analysis for the Behavioral Sciences
Author: Jacob Cohen
Publisher: Routledge
Total Pages: 625
Release: 2013-05-13
Genre: Psychology
ISBN: 1134742770

Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.

Research Methods for the Behavioral and Social Sciences

Research Methods for the Behavioral and Social Sciences
Author: Bart L. Weathington
Publisher: John Wiley & Sons
Total Pages: 672
Release: 2010-01-26
Genre: Psychology
ISBN: 0470458038

A comprehensive introduction to research methods and best practices for designing,conducting, interpreting, and reporting findings This text is designed to develop in students a passion for conducting research and an understanding of the practical value of systematic information- gathering and decision-making. It features step-by-step coverage of the research process including research design, statistical considerations, and guidance on writing up and presenting results. Recognized leaders in the field—authors Bart Weathington, Christopher Cunningham, and David Pittenger—present: Introductions to multiple research designs—including single-participant, multi-group, longitudinal, correlational, and experimental designs—accompanied by examples Bibliographic research and methods for appropriate sampling Identifying, developing, and evaluating reliable and valid approaches to measurement The issues and steps common to all single-factor and multifactor studies, as well as single-subject and nonexperimental methods How to summarize research in writing that conforms to the editorial guidelines of the American Psychological Association A comprehensive review of research methods and the statistical concepts that support them, Research Methods for the Behavioral and Social Sciences offers the best techniques for studying behavior and social phenomena.

Statistical Power Analysis for the Social and Behavioral Sciences

Statistical Power Analysis for the Social and Behavioral Sciences
Author: Xiaofeng Steven Liu
Publisher: Routledge
Total Pages: 285
Release: 2013-11-07
Genre: Psychology
ISBN: 1136464182

This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.