Statistical Physics of Liquids at Freezing and Beyond

Statistical Physics of Liquids at Freezing and Beyond
Author: Shankar Prasad Das
Publisher: Cambridge University Press
Total Pages: 585
Release: 2011-06-16
Genre: Science
ISBN: 1139500678

Exploring important theories for understanding freezing and the liquid-glass transition, this book is useful for graduate students and researchers in soft-condensed matter physics, chemical physics and materials science. It details recent ideas and key developments, providing an up-to-date view of current understanding. The standard tools of statistical physics for the dense liquid state are covered. The freezing transition is described from the classical density functional approach. Classical nucleation theory as well as applications of density functional methods for nucleation of crystals from the melt are discussed, and compared to results from computer simulation of simple systems. Discussions of supercooled liquids form a major part of the book. Theories of slow dynamics and the dynamical heterogeneities of the glassy state are presented, as well as nonequilibrium dynamics and thermodynamic phase transitions at deep supercooling. Mathematical treatments are given in full detail so readers can learn the basic techniques.

Maxwell on Heat and Statistical Mechanics

Maxwell on Heat and Statistical Mechanics
Author: James Clerk Maxwell
Publisher: Lehigh University Press
Total Pages: 564
Release: 1995
Genre: Biography & Autobiography
ISBN: 9780934223348

. These papers shed light on the formation of Maxwell's ideas and theories within the structure of a professional scientific discipline, physics, that had only recently taken shape. While Maxwell responded to and relied on the work of his colleagues, his interpretations often placed his work apart from theirs, to be exploited by later generations of physicists.

New Trends in Statistical Physics of Complex Systems

New Trends in Statistical Physics of Complex Systems
Author: Antonio M. Scarfone
Publisher: MDPI
Total Pages: 203
Release: 2019-01-28
Genre: Mathematics
ISBN: 3038974692

This book is a printed edition of the Special Issue "New Trends in Statistical Physics of Complex Systems" that was published in Entropy

Intermediate Statistical Mechanics

Intermediate Statistical Mechanics
Author: Jayanta K Bhattacharjee
Publisher: World Scientific Publishing Company
Total Pages: 438
Release: 2016-12-15
Genre: Science
ISBN: 9813201169

In this new textbook, a number of unusual applications are discussed in addition to the usual topics covered in a course on Statistical Physics. Examples are: statistical mechanics of powders, Peierls instability, graphene, Bose-Einstein condensates in a trap, Casimir effect and the quantum Hall effect. Superfluidity and super-conductivity (including the physics of high-temperature superconductors) have also been discussed extensively.The emphasis on the treatment of these topics is pedagogic, introducing the basic tenets of statistical mechanics, with extensive and thorough discussion of the postulates, ensembles, and the relevant statistics. Many standard examples illustrate the microcanonical, canonical and grand canonical ensembles, as well as the Bose-Einstein and Fermi-Dirac statistics.A special feature of this text is the detailed presentation of the theory of second-order phase transitions and the renormalization group, emphasizing the role of disorder. Non-equilibrium statistical physics is introduced via the Boltzmann transport equation. Additional topics covered here include metastability, glassy systems, the Langevin equation, Brownian motion, and the Fokker-Planck equation.Graduate students will find the presentation readily accessible, since the topics have been treated with great deal of care and attention to detail.

Manual For Theoretical Chemistry

Manual For Theoretical Chemistry
Author: Dmitry Matyushov
Publisher: World Scientific
Total Pages: 373
Release: 2020-12-23
Genre: Science
ISBN: 9811228914

This study guide aims at explaining theoretical concepts encountered by practitioners applying theory to molecular science. This is a collection of short chapters, a manual, attempting to walk the reader through two types of topics: (i) those that are usually covered by standard texts but are difficult to grasp and (ii) topics not usually covered, but are essential for successful theoretical research. The main focus is on the latter. The philosophy of this book is not to cover a complete theory, but instead to provide a set of simple study cases helping to illustrate main concepts. The focus is on simplicity. Each section is made deliberately short, to enable the reader to easily grasp the contents. Sections are collated in themed chapters, and the advantage is that each section can be studied separately, as an introduction to more in-depth studies. Topics covered are related to elasticity, electrostatics, molecular dynamics and molecular spectroscopy, which form the foundation for many presently active research areas such as molecular biophysics and soft matter physics. The notes provide a uniform approach to all these areas, helping the reader to grasp the basic concepts from a common set of theoretical tools.

Molecular Mechanisms in Materials

Molecular Mechanisms in Materials
Author: Sidney Yip
Publisher: MIT Press
Total Pages: 287
Release: 2023-10-24
Genre: Technology & Engineering
ISBN: 0262048132

A student-oriented introduction to understanding mechanisms at the atomistic level controlling macroscopic materials phenomena through molecular dynamics simulations. Machine-learning-based computation in materials innovation, performance optimization, and sustainability offers exciting opportunities at the mesoscale research frontier. Molecular Mechanisms in Materials presents research findings and insights about material behavior at the molecular level and its impact on macroscopic properties. The book’s fifteen essays represent author Sidney Yip’s work in atomistic modeling and materials simulation over more than five decades. The phenomena are grouped into five basic types: fluctuations in simple fluids, crystal melting, plasticity and fracture, glassy relaxations, and amorphous rheology, all focused on molecular mechanisms in base materials. The organizing principle of Molecular Mechanisms in Materials is multiscale modeling and simulation, where conceptual models and simulation techniques are linked across the micro-to-macro length and time scales to control the outcome of specific materials processes. Each essay addresses a specific standalone topic of materials phenomena while also recognizing the larger context of materials science and technology. Individual case studies serve both as standalone essays and companion pieces to each other. Indeed, the global transformation of science and technology is well underway: in his epilogue, Yip discusses the potential of artificial intelligence and machine learning to enhance future materials for societal benefits in the face of global challenges such as climate change, energy sustainability, infrastructure renewal, and nuclear arms control.

Statistical Mechanics

Statistical Mechanics
Author: James Sethna
Publisher: OUP Oxford
Total Pages: 374
Release: 2006-04-07
Genre: Science
ISBN: 0191566217

In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.

Particle Physics beyond the Standard Model

Particle Physics beyond the Standard Model
Author:
Publisher: Elsevier
Total Pages: 713
Release: 2006-07-04
Genre: Science
ISBN: 0080463142

The Standard Model of elementary particles and interactions is one of the best tested theories in physics. It has been found to be in remarkable agreement with experiment, and its validity at the quantum level has been successfully probed in the electroweak sector. In spite of its experimental successes, though, the Standard Model suffers from a number of limitations, and is likely to be an incomplete theory. It contains many arbitrary parameters; it does not include gravity, the fourth elementary interaction; it does not provide an explanation for the hierarchy between the scale of electroweak interactions and the Planck scale, characteristic of gravitational interactions; and finally, it fails to account for the dark matter and the baryon asymmetry of the universe. This led particle theorists to develop and study various extensions of the Standard Model, such as supersymmetric theories, Grand Unified Theories or theories with extra space-time dimensions - most of which have been proposed well before the experimental verification of the Standard Model. The coming generation of experimental facilities (such as high-energy colliders, B-physics experiments, neutrino superbeams, as well as astrophysical and cosmological observational facilities) will allow us to test the predictions of these theories and to deepen our understanding of the fundamental laws of nature.This book is a collection of lectures given in August 2005 at the Les Houches Summer School on Particle Physics beyond the Standard Model. It provides a pedagogical introduction to the various aspects of particle physics beyond the Standard Model, covering each topic from the basics to the most recent developments: supersymmetric theories, Grand Unified Theories, theories with extra dimensions, flavour physics and CP violation, neutrino physics, astroparticle physics and cosmology.·Provides a pedagogical introduction to particle physics beyond the Standard Model·Covers the various aspects of particle physics beyond the Standard Model·Addresses each topic from the basics to the most recent developments·Addresses both the theoretical and phenomenological aspects of the subject·Written in a pedagogical style by leading experts in the field

Computational Statistical Mechanics

Computational Statistical Mechanics
Author: W.G. Hoover
Publisher: Elsevier
Total Pages: 330
Release: 2012-12-02
Genre: Science
ISBN: 0444596593

Computational Statistical Mechanics describes the use of fast computers to simulate the equilibrium and nonequilibrium properties of gases, liquids, and solids at, and away from equilibrium. The underlying theory is developed from basic principles and illustrated by applying it to the simplest possible examples. Thermodynamics, based on the ideal gas thermometer, is related to Gibb's statistical mechanics through the use of Nosé-Hoover heat reservoirs. These reservoirs use integral feedback to control temperature. The same approach is carried through to the simulation and analysis of nonequilibrium mass, momentum, and energy flows. Such a unified approach makes possible consistent mechanical definitions of temperature, stress, and heat flux which lead to a microscopic demonstration of the Second Law of Thermodynamics directly from mechanics. The intimate connection linking Lyapunov-unstable microscopic motions to macroscopic dissipative flows through multifractal phase-space structures is illustrated with many examples from the recent literature. The book is well-suited for undergraduate courses in advanced thermodynamics, statistical mechanic and transport theory, and graduate courses in physics and chemistry.