Stochastic Methods for Boundary Value Problems

Stochastic Methods for Boundary Value Problems
Author: Karl K. Sabelfeld
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 235
Release: 2016-09-26
Genre: Mathematics
ISBN: 3110479168

This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. The book is written for mathematicians who work in the field of partial differential and integral equations, physicists and engineers dealing with computational methods and applied probability, for students and postgraduates studying mathematical physics and numerical mathematics. Contents: Introduction Random walk algorithms for solving integral equations Random walk-on-boundary algorithms for the Laplace equation Walk-on-boundary algorithms for the heat equation Spatial problems of elasticity Variants of the random walk on boundary for solving stationary potential problems Splitting and survival probabilities in random walk methods and applications A random WOS-based KMC method for electron–hole recombinations Monte Carlo methods for computing macromolecules properties and solving related problems Bibliography

Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time
Author: Harold Kushner
Publisher: Springer Science & Business Media
Total Pages: 480
Release: 2013-11-27
Genre: Mathematics
ISBN: 146130007X

Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.

Forward-Backward Stochastic Differential Equations and their Applications

Forward-Backward Stochastic Differential Equations and their Applications
Author: Jin Ma
Publisher: Springer
Total Pages: 285
Release: 2007-04-24
Genre: Mathematics
ISBN: 3540488316

This volume is a survey/monograph on the recently developed theory of forward-backward stochastic differential equations (FBSDEs). Basic techniques such as the method of optimal control, the 'Four Step Scheme', and the method of continuation are presented in full. Related topics such as backward stochastic PDEs and many applications of FBSDEs are also discussed in detail. The volume is suitable for readers with basic knowledge of stochastic differential equations, and some exposure to the stochastic control theory and PDEs. It can be used for researchers and/or senior graduate students in the areas of probability, control theory, mathematical finance, and other related fields.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
Total Pages: 327
Release: 2019-05-02
Genre: Business & Economics
ISBN: 1316510085

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Stochastic Methods for Boundary Value Problems

Stochastic Methods for Boundary Value Problems
Author: Karl K. Sabelfeld
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 208
Release: 2016-09-26
Genre: Mathematics
ISBN: 3110479451

This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. The book is written for mathematicians who work in the field of partial differential and integral equations, physicists and engineers dealing with computational methods and applied probability, for students and postgraduates studying mathematical physics and numerical mathematics. Contents: Introduction Random walk algorithms for solving integral equations Random walk-on-boundary algorithms for the Laplace equation Walk-on-boundary algorithms for the heat equation Spatial problems of elasticity Variants of the random walk on boundary for solving stationary potential problems Splitting and survival probabilities in random walk methods and applications A random WOS-based KMC method for electron–hole recombinations Monte Carlo methods for computing macromolecules properties and solving related problems Bibliography

Handbook of Mathematical Geodesy

Handbook of Mathematical Geodesy
Author: Willi Freeden
Publisher: Birkhäuser
Total Pages: 938
Release: 2018-06-11
Genre: Mathematics
ISBN: 3319571818

Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.

Stochastic Numerics for Mathematical Physics

Stochastic Numerics for Mathematical Physics
Author: Grigori N. Milstein
Publisher: Springer Nature
Total Pages: 754
Release: 2021-12-03
Genre: Computers
ISBN: 3030820408

This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.

Handbook of Stochastic Methods

Handbook of Stochastic Methods
Author: Crispin W. Gardiner
Publisher: Springer Verlag
Total Pages: 442
Release: 1985-01-01
Genre: Mathematics
ISBN: 9783540616344

Stochastic Methods for Flow in Porous Media

Stochastic Methods for Flow in Porous Media
Author: Dongxiao Zhang
Publisher: Elsevier
Total Pages: 371
Release: 2001-10-11
Genre: Mathematics
ISBN: 0080517773

Stochastic Methods for Flow in Porous Media: Coping with Uncertainties explores fluid flow in complex geologic environments. The parameterization of uncertainty into flow models is important for managing water resources, preserving subsurface water quality, storing energy and wastes, and improving the safety and economics of extracting subsurface mineral and energy resources. This volume systematically introduces a number of stochastic methods used by researchers in the community in a tutorial way and presents methodologies for spatially and temporally stationary as well as nonstationary flows. The author compiles a number of well-known results and useful formulae and includes exercises at the end of each chapter. - Balanced viewpoint of several stochastic methods, including Greens' function, perturbative expansion, spectral, Feynman diagram, adjoint state, Monte Carlo simulation, and renormalization group methods - Tutorial style of presentation will facilitate use by readers without a prior in-depth knowledge of Stochastic processes - Practical examples throughout the text - Exercises at the end of each chapter reinforce specific concepts and techniques - For the reader who is interested in hands-on experience, a number of computer codes are included and discussed