Superplasticity in Advanced Materials

Superplasticity in Advanced Materials
Author: José María Cabrera Marrero
Publisher: Materials Research Forum LLC
Total Pages: 391
Release: 2023-09-01
Genre: Technology & Engineering
ISBN: 1644902613

The book presents practical and theoretical works on superplasticity in metals and ceramics, on deformation mechanisms, on processes to obtain large ultrafine-grained structures, on advanced characterization techniques, and on hot deformation of advanced materials. Key papers focus on (1) processing of metallic alloys for achieving exceptional superplastic properties, (2) high-pressure sliding (HPS) processes, (3) in-situ neutron and synchrotron methods, and (4) ultra-severe plastic deformation. Keywords: Superplasticity, Superfunctionality, High-pressure Sliding, High-pressure Torsion, Precise Forming, Numerical Simulation, Aeronautical Parts, Near-unconstrained Superplastic Parts, Low-temperature Superplasticity, Friction Stir Processing, Microstructure Evolution, Corrosion Properties, Duplex Stainless Steel, Grain Boundary Sliding, Laminated Materials, Asymmetric Hot Rolling, Uniaxial Hot Pressing, Diffusion Bonding.

Ultrafine Grained Materials II

Ultrafine Grained Materials II
Author: Yuntian Theodore Zhu
Publisher: John Wiley & Sons
Total Pages: 886
Release: 2013-09-25
Genre: Technology & Engineering
ISBN: 1118804481

Proceedings of a symposium sponsored by the Shaping and Forming Committee of the Materials Processing and Manufacturing Division (MPMD) and the Mechanical Behavior Committee (Jt. SMD/ASM-MSCTS) of the Structural Materials Division (SMD) of TMS (The Minerals, Metals & Materials Society) and held during the 2002 TMS Annual Meeting in Seattle, Washington February 17-21,2002.

Superplasticity in Advanced Materials

Superplasticity in Advanced Materials
Author: K. F. Zhang
Publisher:
Total Pages: 684
Release: 2007
Genre: Science
ISBN:

Interest in the phenomenon of superplasticity has been increasing steadily over the past thirty-four years, both from the viewpoint of fundamental scientific understanding as well as of industrial application. The scope of superplasticity has also broadened materials-wise, and now includes, in addition to metals: intermetallics, ceramics, bulk metallic glasses, nanostructured materials and composites.

Superplasticity in Advanced Materials

Superplasticity in Advanced Materials
Author: Richard I. Todd
Publisher:
Total Pages: 580
Release: 2004
Genre: Science
ISBN:

Superplastic forming (SPF) has come a long way from its relatively recent history of being of interest only to the aerospace and aeronautical industries, and has made rapid inroads into applications in the automotive, rail, architectural, sports, dental and entertainment sectors. This book comprises 82 papers which describe in detail the latest developments in the field. All aspects of the subject are covered, ranging from the atomistic simulation of grain-boundary sliding to the industrial-scale application of superplasticity and of diffusion bonding. This volume therefore represents an invaluable guide to the state-of-the-art in this field.

Superplasticity in Advanced Materials, ICSAM-94

Superplasticity in Advanced Materials, ICSAM-94
Author: Terence G. Langdon
Publisher:
Total Pages: 836
Release: 1994
Genre: Science
ISBN:

While the superplastic phenomenon was first demonstrated in scientific experiments conducted in the United Kingdom, much of the early systematic work in this area was performed in Russia. This volume covers the recent developments concerning superplastictity phenomena in many materials classes of current interest.

Superplasticity in Advanced Materials, ICSAM-97

Superplasticity in Advanced Materials, ICSAM-97
Author: Atul H. Chokshi
Publisher:
Total Pages: 874
Release: 1997
Genre: Science
ISBN:

Interest in the phenomenon of superplasticity has been increasing steadily over the past two decades, both with regard to promoting fundamental scientific understanding as well as commercial application. Most of the early studies on superplasticity dealt with microduplex metallic alloys. The unabated interest in, and scientific research on, superplasticity has now broadened the scope of the topic to include intermetallic compounds, ceramics, composites and nanocrystalline materials.

Superplastic Forming of Advanced Metallic Materials

Superplastic Forming of Advanced Metallic Materials
Author: G Giuliano
Publisher: Elsevier
Total Pages: 384
Release: 2011-06-27
Genre: Technology & Engineering
ISBN: 0857092774

Ultra fine-grained metals can show exceptional ductility, known as superplasticity, during sheet forming. The higher ductility of superplastic metals makes it possible to form large and complex components in a single operation without joints or rivets. The result is less waste, lower weight and manufacturing costs, high precision and lack of residual stress associated with welding which makes components ideal for aerospace, automotive and other applications. Superplastic forming of advanced metallic materials summarises key recent research on this important process.Part one reviews types of superplastic metals, standards for superplastic forming, processes and equipment. Part two discusses ways of modelling superplastic forming processes whilst the final part of the book considers applications, including superplastic forming of titanium, aluminium and magnesium alloys.With its distinguished editor and international team of contributors, Superplastic forming of advanced metallic materials is a valuable reference for metallurgists and engineers in such sectors as aerospace and automotive engineering.Note: The Publishers wish to point out an error in the authorship of Chapter 3 which was originally listed as: G. Bernhart, Clément Ader Institute, France. The correct authorship is: G Bernhart, P. Lours, T. Cutard, V. Velay, Ecole des Mines Albi, France and F. Nazaret, Aurock, France. The Publishers apologise to the authors for this error. - Reviews types of superplastic metals and standards for superplastic forming - Discusses the modelling of superplastic forming, including mathematical and finite element modelling - Examines various applications, including superplastic forming of titanium, aluminiun and magnesium alloys

Superplastic Flow

Superplastic Flow
Author: K.A. Padmanabhan
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 366204367X

Superplasticity is the ability of polycrystalline materials under certain conditions to exhibit extreme tensile elongation in a nearly homogeneous/isotropic manner. Historically, this phenomenon was discovered and systematically studied by metallurgists and physicists. They, along with practising engineers, used materials in the superplastic state for materials forming applications. Metallurgists concluded that they had the necessary information on superplasticity and so theoretical studies focussed mostly on understanding the physical and metallurgi cal properties of superplastic materials. Practical applications, in contrast, were led by empirical approaches, rules of thumb and creative design. It has become clear that mathematical models of superplastic deformation as well as analyses for metal working processes that exploit the superplastic state are not adequate. A systematic approach based on the methods of mechanics of solids is likely to prove useful in improving the situation. The present book aims at the following. 1. Outline briefly the techniques of mechanics of solids, particularly as it applies to strain rate sensitive materials. 2. Assess the present level of investigations on the mechanical behaviour of superplastics. 3. Formulate the main issues and challenges in mechanics ofsuperplasticity. 4. Analyse the mathematical models/constitutive equations for superplastic flow from the viewpoint of mechanics. 5. Review the models of superplastic metal working processes. 6. Indicate with examples new results that may be obtained using the methods of mechanics of solids.