Author | : Peter Malischewsky |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 232 |
Release | : 1987-12-31 |
Genre | : Science |
ISBN | : 3112756673 |
No detailed description available for "Surface Waves and Discontinuities".
Author | : Peter Malischewsky |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 232 |
Release | : 1987-12-31 |
Genre | : Science |
ISBN | : 3112756673 |
No detailed description available for "Surface Waves and Discontinuities".
Author | : Peter Malischewsky |
Publisher | : |
Total Pages | : 238 |
Release | : 1987 |
Genre | : Digital filters (Mathematics) |
ISBN | : |
Author | : Sebastiano Foti |
Publisher | : CRC Press |
Total Pages | : 492 |
Release | : 2014-08-21 |
Genre | : Technology & Engineering |
ISBN | : 0415678765 |
Develop a Greater Understanding of How and Why Surface Wave Testing Works Using examples and case studies directly drawn from the authors’ experience, Surface Wave Methods for Near-Surface Site Characterization addresses both the experimental and theoretical aspects of surface wave propagation in both forward and inverse modeling. This book accents the key facets associated with surface wave testing for near-surface site characterization. It clearly outlines the basic principles, the theoretical framework and the practical implementation of surface wave analysis. In addition, it also describes in detail the equipment and measuring devices, acquisition techniques, signal processing, forward and inverse modeling theories, and testing protocols that form the basis of modern surface wave techniques. Review Examples of Typical Applications for This Geophysical Technique Divided into eight chapters, the book explains surface wave testing principles from data measurement to interpretation. It effectively integrates several examples and case studies illustrating how different ground conditions and geological settings may influence the interpretation of data measurements. The authors accurately describe each phase of testing in addition to the guidelines for correctly performing and interpreting results. They present variants of the test within a consistent framework to facilitate comparisons, and include an in-depth discussion of the uncertainties arising at each stage of surface wave testing. Provides a comprehensive and in-depth treatment of all the steps involved in surface wave testing Discusses surface wave methods and their applications in various geotechnical conditions and geological settings Explains how surface wave measurements can be used to estimate both stiffness and dissipative properties of the ground Addresses the issue of uncertainty, which is often an overlooked problem in surface wave testing Includes examples with comparative analysis using different processing techniques and inversion algorithms Outlines advanced applications of surface wave testing such as joint inversion, underwater investigation, and Love wave analysis Written for geotechnical engineers, engineering seismologists, geophysicists, and researchers, Surface Wave Methods for Near-Surface Site Characterization offers practical guidance, and presents a thorough understanding of the basic concepts.
Author | : Brian Kennett |
Publisher | : ANU E Press |
Total Pages | : 298 |
Release | : 2009-05-01 |
Genre | : Reference |
ISBN | : 192153673X |
Seismic Wave Propagation in Stratified Media presents a systematic treatment of the interaction of seismic waves with Earth structure. The theoretical development is physically based and is closely tied to the nature of the seismograms observed across a wide range of distance scales - from a few kilometres as in shallow reflection work for geophysical prospecting, to many thousands of kilometres for major earthquakes. A unified framework is presented for all classes of seismic phenomena, for both body waves and surface waves. Since its first publication in 1983 this book has been an important resource for understanding the way in which seismic waves can be understood in terms of reflection and transmission properties of Earth models, and how complete theoretical seismograms can be calculated. The methods allow the development of specific approximations that allow concentration on different seismic arrivals and hence provide a direct tie to seismic observations.
Author | : D.E. James |
Publisher | : Springer Science & Business Media |
Total Pages | : 1299 |
Release | : 1989-11-30 |
Genre | : Science |
ISBN | : 0442243669 |
Consisting of more than 150 articles written by leading experts, this authoritative reference encompasses the entire field of solid-earth geophysics. It describes in detail the state of current knowledge, including advanced instrumentation and techniques, and focuses on important areas of exploration geophysics. It also offers clear and complete coverage of seismology, geodesy, gravimetry, magnetotellurics and related areas in the adjacent disciplines of physics, geology, oceanography and space science.
Author | : Andreas Fichtner |
Publisher | : Springer Science & Business Media |
Total Pages | : 352 |
Release | : 2010-11-16 |
Genre | : Science |
ISBN | : 3642158072 |
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.
Author | : Sergey V. Biryukov |
Publisher | : Springer Science & Business Media |
Total Pages | : 398 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642577679 |
Surface Acoustic Waves in Inhomogeneous Media covers almost all important problems of the interaction of different types of surface acoustic waves with surface inhomogeneities. The problems of surface acoustic wave interaction with periodic topographic gratings widely used in filters and resonators are under careful consideration. The most important results of surface wave scattering by local defects such as grooves, random roughness, elastic wedges are given. Different theoretical approaches and practical rules for solving the surface wave problems are presented.
Author | : Huaiyu Yuan |
Publisher | : John Wiley & Sons |
Total Pages | : 490 |
Release | : 2018-10-29 |
Genre | : Science |
ISBN | : 1119249732 |
A multidisciplinary update on continental plate tectonics and plate boundary discontinuities Understanding the origin and evolution of the continental crust continues to challenge Earth scientists. Lithospheric Discontinuities offers a multidisciplinary review of fine scale layering within the continental lithosphere to aid the interpretation of geologic layers. Once Earth scientists can accurately decipher the history, internal dynamics, and evolution of the continental lithosphere, we will have a clearer understanding of how the crust formed, how plate tectonics began, and how our continents became habitable. Volume highlights: Theories and observations of the current state of tectonic boundaries and discontinuities Contributions on field observations, laboratory experiments, and geodynamic predictions from leading experts in the field Mantle fabrics in response to various mantle deformation processes Insights on fluid distribution using geophysical observations, and thermal and viscosity constraints from dynamic modeling Discontinuities associated with lithosphere and lithosphere-asthenosphere boundary An integrated study of the evolving physical and chemical processes associated with lithosphere asthenosphere interaction Written for academic and researchgeoscientists, particularly in the field of tectonophysics, geophysicists, geodynamics, seismology, structural geology, environmental geology, and geoengineering, Lithospheric Discontinuities is a valuable resource that sheds light on the origin and evolution of plate interaction processes.