Sustainable Polymers from Biomass

Sustainable Polymers from Biomass
Author: Chuanbing Tang
Publisher: John Wiley & Sons
Total Pages: 458
Release: 2017-02-21
Genre: Technology & Engineering
ISBN: 352734019X

Offering a unique perspective summarizing research on this timely important topic around the globe, this book provides comprehensive coverage of how molecular biomass can be transformed into sustainable polymers. It critically discusses and compares a few classes of biomass - oxygen-rich, hydrocarbon-rich, hydrocarbon and non-hydrocarbon (including carbon dioxide) as well as natural polymers - and equally includes products that are already commercialized. A must-have for both newcomers to the field as well as established researchers in both academia and industry.

Advances in Sustainable Polymers

Advances in Sustainable Polymers
Author: Vimal Katiyar
Publisher: Springer Nature
Total Pages: 421
Release: 2020-03-03
Genre: Technology & Engineering
ISBN: 9811512515

This book discusses synthesis and characterization of sustainable polymers. The book covers opportunities and challenges of using sustainable polymers to replace existing petroleum based feedstock. This volume provides insights into the chemistry of polymerization, and discusses tailoring the properties of the polymers at the source in order fit requirements of specific applications. The book also covers processing of these polymers and their critical assessment. The book will be of use to chemists and engineers in the industry and academia working on sustainable polymers and their commercialization to replace dependence on petroleum-based polymers.

Monomers, Polymers and Composites from Renewable Resources

Monomers, Polymers and Composites from Renewable Resources
Author: Mohamed Naceur Belgacem
Publisher: Elsevier
Total Pages: 562
Release: 2011-10-10
Genre: Technology & Engineering
ISBN: 0080560512

The progressive dwindling of fossil resources, coupled with the drastic increase in oil prices, have sparked a feverish activity in search of alternatives based on renewable resources for the production of energy. Given the predominance of petroleum- and carbon-based chemistry for the manufacture of organic chemical commodities, a similar preoccupation has recently generated numerous initiatives aimed at replacing these fossil sources with renewable counterparts. In particular, major efforts are being conducted in the field of polymer science and technology to prepare macromolecular materials based on renewable resources. The concept of the bio-refinery, viz. the rational exploitation of the vegetable biomass in terms of the separation of its components and their utilisation as such, or after suitable chemical modifications, is thus gaining momentum and considerable financial backing from both the public and private sectors. This collection of chapters, each one written by internationally recognised experts in the corresponding field, covers in a comprehensive fashion all the major aspects related to the synthesis, characterization and properties of macromolecular materials prepared using renewable resources as such, or after appropriate modifications. Thus, monomers such as terpenes and furans, oligomers like rosin and tannins, and polymers ranging from cellulose to proteins and including macromolecules synthesized by microbes, are discussed with the purpose of showing the extraordinary variety of materials that can be prepared from their intelligent exploitation. Particular emphasis has been placed on recent advances and imminent perspectives, given the incessantly growing interest that this area is experiencing in both the scientific and technological realms. - Discusses bio-refining with explicit application to materials - Replete with examples of applications of the concept of sustainable development - Presents an impressive variety of novel macromolecular materials

Sustainable Polymers from Biomass

Sustainable Polymers from Biomass
Author: Chuanbing Tang
Publisher: John Wiley & Sons
Total Pages: 373
Release: 2017-02-17
Genre: Technology & Engineering
ISBN: 3527340173

Offering a unique perspective summarizing research on this timely important topic around the globe, this book provides comprehensive coverage of how molecular biomass can be transformed into sustainable polymers. It critically discusses and compares a few classes of biomass - oxygen-rich, hydrocarbon-rich, hydrocarbon and non-hydrocarbon (including carbon dioxide) as well as natural polymers - and equally includes products that are already commercialized. A must-have for both newcomers to the field as well as established researchers in both academia and industry.

Chemicals from Biomass

Chemicals from Biomass
Author: Debalina Sengupta
Publisher: CRC Press
Total Pages: 506
Release: 2012-07-05
Genre: Science
ISBN: 1439878153

Chemicals from Biomass: Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development helps engineers optimize the development of new chemical and polymer plants that use renewable resources to replace the output of goods and services from existing plants. It also discusses the conversion of those existing plants into faci

Introduction to Chemicals from Biomass

Introduction to Chemicals from Biomass
Author: James H. Clark
Publisher: John Wiley & Sons
Total Pages: 340
Release: 2014-12-22
Genre: Science
ISBN: 1118714458

Introduction to Chemicals from Biomass, Second Edition presents an overview of the use of biorenewable resources in the 21st century for the manufacture of chemical products, materials and energy. The book demonstrates that biomass is essentially a rich mixture of chemicals and materials and, as such, has a tremendous potential as feedstock for making a wide range of chemicals and materials with applications in industries from pharmaceuticals to furniture. Completely revised and updated to reflect recent developments, this new edition begins with an introduction to the biorefinery concept, followed by chapters addressing the various types of available biomass feedstocks, including waste, and the different pre-treatment and processing technologies being developed to turn these feedstocks into platform chemicals, polymers, materials and energy. The book concludes with a discussion on the policies and strategies being put in place for delivering the so-called Bioeconomy. Introduction to Chemicals from Biomass is a valuable resource for academics, industrial scientists and policy-makers working in the areas of industrial biotechnology, biorenewables, chemical engineering, fine and bulk chemical production, agriculture technologies, plant science, and energy and power generation. We need to reduce our dependence on fossil resources and increasingly derive all the chemicals we take for granted and use in our daily life from biomass – and we must make sure that we do this using green chemistry and sustainable technologies! For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs Topics covered include: • The biorefinery concept • Biomass feedstocks • Pre-treatment technologies • Platform molecules from renewable resources • Polymers from bio-based monomers • Biomaterials • Bio-based energy production Praise for the 1st edition: “Drawing on the expertise of the authors the book involves a degree of plant biology and chemical engineering, which illustrates the multidisciplinary nature of the topic beautifully” - Chemistry World

Encyclopedia of Polymeric Nanomaterials

Encyclopedia of Polymeric Nanomaterials
Author: Shiro Kobayashi
Publisher: Springer
Total Pages: 0
Release: 2015-06-12
Genre: Technology & Engineering
ISBN: 9783642296475

Over the last few years, nanoscience and nanotechnology have been the focus of significant research attention, both from academia and industry. This sustained focus has in-turn driven the interdisciplinary field of material science research to the forefront of scientific inquiry through the creation and study of nanomaterials. Nanomaterials play an important role in the development of new materials as they can be used to influence and control physical properties and specific characteristics of other materials. Nanostructured materials that have been created include nanoparticles, nanocapsules, nanoporous materials, polymer multi-layers to name a few. These are increasingly used across applications as diverse as automotive, environment, energy, catalysis, biomedical, pharmaceutical, and polymer industries. The Encyclopedia of Polymeric Nanomaterials (EPN) intends to be a comprehensive reference work on this dynamic field studying nanomaterials within the context of the relationship between molecular structure and the properties of polymeric materials. Alphabetically organized as an encyclopedic Major Reference Work, EPN will cover the subject along multiple classification axes represented by name, source, properties, function, and structures or even processes, applications and usage. The underlying themes of the encyclopedia has been carefully identified to be based not just on material-based and function-based representation but also on structure- and process-based representation. The encyclopedia will have an exclusive focus on polymeric nanomaterials (for e.g., nanoceramics, nanocomposites, quantum dots, thin films) and will be a first of its kind work to have such an organization providing an overview to the concepts, practices and applications in the field. The encyclopedia intends to cover research and development work ranging from the fundamental mechanisms used for the fabrication of polymeric nanomaterials to their advanced application across multiple industries.

Biobased Polymers

Biobased Polymers
Author: Pratima Bajpai
Publisher: Elsevier
Total Pages: 252
Release: 2019-06-14
Genre: Technology & Engineering
ISBN: 0128184051

Biobased Polymers: Properties and Applications in Packaging looks at how biopolymers may be used in packaging as a potential green solution. The book addresses bio-based feedstocks, production processes, packaging types, recent trends in packaging, the environmental impact of bio-based polymers, and legislative demands for food contact packaging materials. Chapters explore opportunities for biopolymers in key end-use sectors, the penetration of biopolymer based concepts in the packaging market, and barriers to widespread commercialization. As the development of bio-based material is an important factor for sustainably growing the packaging industry, these recent trends in consumer markets are extremely important as we move towards greener packaging. Hence, this resource is an invaluable addition on the topic. - Offers a comprehensive introduction to the subject for researchers interested in bio-based products, green and sustainable chemistry, polymer chemistry and materials science - Covers the market for bio-based materials - Includes discussions on legislative demands for food contact packaging materials - Describes interesting new technologies, including nanotechnology approaches

Technology and Applications of Polymers Derived from Biomass

Technology and Applications of Polymers Derived from Biomass
Author: Syed Ali Ashter
Publisher: William Andrew
Total Pages: 288
Release: 2017-11-22
Genre: Technology & Engineering
ISBN: 0323511163

Technology and Applications of Polymers Derived from Biomass explores the range of different possible routes from biomass to polymeric materials, including the value and limitations of using biomass in material applications and a comparison of petrochemical-derived polymers and bio-based polymers. The book discusses biomass sources, types, chemistry and handling concerns. It covers the manufacture of industrial chemicals from biomass and the derivation of monomers and polymers from biomass. It also details the processing and applications of biomass-derived polymers to enable materials scientists and engineers realize the potential of biomass as a sustainable source of polymers, including plastics and elastomers. The book is a one-stop-shop reference—giving students a basic understanding of the technology and how the material can be applied to industrial processes they will face in the workforce, and giving materials engineers and product designers the information they need to make more informed material selection decisions. - Provides fundamental understanding of an increasingly important approach to sourcing polymeric materials - Includes actionable, relevant information to enable materials engineers and product designers consider biomass-derived polymers in the products they are developing - Discusses the environmental impact of biomass conversion to help readers improve the sustainability of their operations - Compares petrochemical-derived polymers with bio-based polymers