Swarm, Evolutionary, and Memetic Computing and Fuzzy and Neural Computing

Swarm, Evolutionary, and Memetic Computing and Fuzzy and Neural Computing
Author: Aleš Zamuda
Publisher: Springer Nature
Total Pages: 224
Release: 2020-01-02
Genre: Computers
ISBN: 3030378381

This volume constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2019, and 5th International Conference on Fuzzy and Neural Computing, FANCCO 2019, held in Maribor, Slovenia, in July 2019. The 18 full papers presented in this volume were carefully reviewed and selected from a total of 31 submissions for inclusion in the proceedings. The papers cover a wide range of topics in swarm, evolutionary, memetic and other intelligent computing algorithms and their real world applications in problems selected from diverse domains of science and engineering.

Swarm, Evolutionary, and Memetic Computing

Swarm, Evolutionary, and Memetic Computing
Author: Bijaya Ketan Panigrahi
Publisher: Springer
Total Pages: 696
Release: 2013-12-12
Genre: Computers
ISBN: 3319037560

The two-volume set LNCS 8297 and LNCS 8298 constitutes the proceedings of the 4th International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2013, held in Chennai, India, in December 2013. The total of 123 papers presented in this volume was carefully reviewed and selected for inclusion in the proceedings. They cover cutting-edge research on swarm, evolutionary and memetic computing, neural and fuzzy computing and its application.

Swarm, Evolutionary, and Memetic Computing, Part II

Swarm, Evolutionary, and Memetic Computing, Part II
Author: Bijata Ketan Panigraphi
Publisher: Springer Science & Business Media
Total Pages: 353
Release: 2011-12-07
Genre: Computers
ISBN: 364227241X

These two volumes, LNCS 7076 and LNCS 7077, constitute the refereed proceedings of the Second International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2011, held in Visakhapatnam, India, in December 2011. The 124 revised full papers presented in both volumes were carefully reviewed and selected from 422 submissions. The papers explore new application areas, feature new bio-inspired algorithms for solving specific hard optimization problems, and review the latest progresses in the cutting-edge research with swarm, evolutionary, and memetic computing in both theoretical and practical aspects.

Self-Organizing Migrating Algorithm

Self-Organizing Migrating Algorithm
Author: Donald Davendra
Publisher: Springer
Total Pages: 294
Release: 2016-02-04
Genre: Technology & Engineering
ISBN: 3319281615

This book brings together the current state of-the-art research in Self Organizing Migrating Algorithm (SOMA) as a novel population-based evolutionary algorithm, modeled on the predator-prey relationship, by its leading practitioners. As the first ever book on SOMA, this book is geared towards graduate students, academics and researchers, who are looking for a good optimization algorithm for their applications. This book presents the methodology of SOMA, covering both the real and discrete domains, and its various implementations in different research areas. The easy-to-follow and implement methodology used in the book will make it easier for a reader to implement, modify and utilize SOMA.

Computational Intelligence in Data Mining—Volume 2

Computational Intelligence in Data Mining—Volume 2
Author: Himansu Sekhar Behera
Publisher: Springer
Total Pages: 513
Release: 2015-12-09
Genre: Technology & Engineering
ISBN: 813222731X

The book is a collection of high-quality peer-reviewed research papers presented in the Second International Conference on Computational Intelligence in Data Mining (ICCIDM 2015) held at Bhubaneswar, Odisha, India during 5 – 6 December 2015. The two-volume Proceedings address the difficulties and challenges for the seamless integration of two core disciplines of computer science, i.e., computational intelligence and data mining. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.

Medical Diagnosis Using Artificial Neural Networks

Medical Diagnosis Using Artificial Neural Networks
Author: Moein, Sara
Publisher: IGI Global
Total Pages: 326
Release: 2014-06-30
Genre: Medical
ISBN: 146666147X

Advanced conceptual modeling techniques serve as a powerful tool for those in the medical field by increasing the accuracy and efficiency of the diagnostic process. The application of artificial intelligence assists medical professionals to analyze and comprehend a broad range of medical data, thus eliminating the potential for human error. Medical Diagnosis Using Artificial Neural Networks introduces effective parameters for improving the performance and application of machine learning and pattern recognition techniques to facilitate medical processes. This book is an essential reference work for academicians, professionals, researchers, and students interested in the relationship between artificial intelligence and medical science through the use of informatics to improve the quality of medical care.

Data Democracy

Data Democracy
Author: Feras A. Batarseh
Publisher: Academic Press
Total Pages: 268
Release: 2020-01-21
Genre: Science
ISBN: 0128189398

Data Democracy: At the Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering provides a manifesto to data democracy. After reading the chapters of this book, you are informed and suitably warned! You are already part of the data republic, and you (and all of us) need to ensure that our data fall in the right hands. Everything you click, buy, swipe, try, sell, drive, or fly is a data point. But who owns the data? At this point, not you! You do not even have access to most of it. The next best empire of our planet is one who owns and controls the world's best dataset. If you consume or create data, if you are a citizen of the data republic (willingly or grudgingly), and if you are interested in making a decision or finding the truth through data-driven analysis, this book is for you. A group of experts, academics, data science researchers, and industry practitioners gathered to write this manifesto about data democracy. - The future of the data republic, life within a data democracy, and our digital freedoms - An in-depth analysis of open science, open data, open source software, and their future challenges - A comprehensive review of data democracy's implications within domains such as: healthcare, space exploration, earth sciences, business, and psychology - The democratization of Artificial Intelligence (AI), and data issues such as: Bias, imbalance, context, and knowledge extraction - A systematic review of AI methods applied to software engineering problems

Metaheuristic Computation: A Performance Perspective

Metaheuristic Computation: A Performance Perspective
Author: Erik Cuevas
Publisher: Springer Nature
Total Pages: 281
Release: 2020-10-05
Genre: Technology & Engineering
ISBN: 3030581004

This book is primarily intended for undergraduate and postgraduate students of Science, Electrical Engineering, or Computational Mathematics. Metaheuristic search methods are so numerous and varied in terms of design and potential applications; however, for such an abundant family of optimization techniques, there seems to be a question which needs to be answered: Which part of the design in a metaheuristic algorithm contributes more to its better performance? Several works that compare the performance among metaheuristic approaches have been reported in the literature. Nevertheless, they suffer from one of the following limitations: (A)Their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. (B) Their conclusions consider only the comparison of their final results which cannot evaluate the nature of a good or bad balance between exploration and exploitation. The objective of this book is to compare the performance of various metaheuristic techniques when they are faced with complex optimization problems extracted from different engineering domains. The material has been compiled from a teaching perspective.

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
Total Pages: 1810
Release: 2016-07-26
Genre: Computers
ISBN: 1522507892

As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.