Synthon Model of Organic Chemistry and Synthesis Design

Synthon Model of Organic Chemistry and Synthesis Design
Author: Jaroslav Koca
Publisher: Springer Science & Business Media
Total Pages: 216
Release: 2012-12-06
Genre: Science
ISBN: 3642934161

One of the most interesting fields of mathematically oriented chemical research is the so-called computer-assisted organic synthesis design. These lecture notes elaborate the mathematical model of organic chemistry, which offers formal concepts for unambiguous description of computer algorithms for organic synthesis design including retrosynthesis and reaction mechanisms. All definitions and theorems are supplemented by many illustrative examples. The model is closely related to the course of thinking of organic chemists. These notes will be useful for all theoretically oriented organic chemists who are interested in mathematical modelling of organic chemistry and computer-assisted organic synthesis design.

Designing Organic Syntheses

Designing Organic Syntheses
Author: Stuart Warren
Publisher: John Wiley & Sons
Total Pages: 298
Release: 1991-01-08
Genre: Science
ISBN: 9780471996125

Teaches students to use the language of sythesis directly (utilizing the grammar of synthon and disconnection) rather than translating it into that of organic chemistry.

Synthon Model of Organic Chemistry and Synthesis Design

Synthon Model of Organic Chemistry and Synthesis Design
Author: Jaroslav Koca
Publisher:
Total Pages: 220
Release: 1989-03-22
Genre:
ISBN: 9783642934179

One of the most interesting fields of mathematically oriented chemical research is the so-called computer-assisted organic synthesis design. These lecture notes elaborate the mathematical model of organic chemistry, which offers formal concepts for unambiguous description of computer algorithms for organic synthesis design including retrosynthesis and reaction mechanisms. All definitions and theorems are supplemented by many illustrative examples. The model is closely related to the course of thinking of organic chemists. These notes will be useful for all theoretically oriented organic chemists who are interested in mathematical modelling of organic chemistry and computer-assisted organic synthesis design.

Chemical Reaction Networks

Chemical Reaction Networks
Author: Oleg N. Temkin
Publisher: CRC Press
Total Pages: 300
Release: 2020-07-24
Genre: Science
ISBN: 1000141160

Over the last decade, increased attention to reaction dynamics, combined with the intensive application of computers in chemical studies, mathematical modeling of chemical processes, and mechanistic studies has brought graph theory to the forefront of research. It offers an advanced and powerful formalism for the description of chemical reactions and their intrinsic reaction mechanisms. Chemical Reaction Networks: A Graph-Theoretical Approach elegantly reviews and expands upon graph theory as applied to mechanistic theory, chemical kinetics, and catalysis. The authors explore various graph-theoretical approaches to canonical representation, numbering, and coding of elementary steps and chemical reaction mechanisms, the analysis of their topological structure, the complexity estimation, and classification of reaction mechanisms. They discuss topologically distinctive features of multiroute catalytic and noncatalytic and chain reactions involving metal complexes. With it's careful balance of clear language and mathematical rigor, the presentation of the authors' significant original work, and emphasis on practical applications and examples, Chemical Reaction Networks: A Graph Theoretical Approach is both an outstanding reference and valuable tool for chemical research.

Introduction to Strategies for Organic Synthesis

Introduction to Strategies for Organic Synthesis
Author: Laurie S. Starkey
Publisher: John Wiley & Sons
Total Pages: 360
Release: 2012-01-18
Genre: Science
ISBN: 1118180852

The stepping-stone text for students with a preliminary knowledge of organic chemistry looking to move into organic synthesis research and graduate-level coursework Organic synthesis is an advanced but important field of organic chemistry, however resources for advanced undergraduates and graduate students moving from introductory organic chemistry courses to organic synthesis research are scarce. Introduction to Strategies for Organic Synthesis is designed to fill this void, teaching practical skills for making logical retrosynthetic disconnections, while reviewing basic organic transformations, reactions, and reactivities. Divided into seven parts that include sections on Retrosynthesis and Protective Groups; Overview of Organic Transformations; Synthesis of Monofunctional Target Molecules; Synthesis of Target Molecules with Two Functional Groups; Synthesis of Aromatic Target Molecules; Synthesis of Compounds Containing Rings; and Predicting and Controlling Stereochemistry, the book covers everything students need to successfully perform retrosynthetic analyses of target molecule synthesis. Starting with a review of functional group transformations, reagents, and reaction mechanisms, the book demonstrates how to plan a synthesis, explaining functional group analysis and strategic disconnections. Incorporating a review of the organic reactions covered, it also demonstrates each reaction from a synthetic chemist's point of view, to provide students with a clearer understanding of how retrosynthetic disconnections are made. Including detailed solutions to over 300 problems, worked-through examples and end-of-chapter comprehension problems, Introduction to Strategies for Organic Synthesis serves as a stepping stone for students with an introductory knowledge of organic chemistry looking to progress to more advanced synthetic concepts and methodologies.

Molecular Quantum Similarity in QSAR and Drug Design

Molecular Quantum Similarity in QSAR and Drug Design
Author: R. Carbo-Dorca
Publisher: Springer Science & Business Media
Total Pages: 138
Release: 2012-12-06
Genre: Science
ISBN: 3642572731

The authors introduce the concept of Molecular Quantum Similarity, developed in their laboratory, in a didactic form. The basis of the concept combines quantum theoretical calculations with molecular structure and properties even for large molecules. They give definitions and procedures to compute similarities molecules and provide graphical tools for visualization of sets of molecules as n-dimensional point charts.

Handbook of Chemoinformatics Algorithms

Handbook of Chemoinformatics Algorithms
Author: Jean-Loup Faulon
Publisher: CRC Press
Total Pages: 454
Release: 2010-04-21
Genre: Computers
ISBN: 142008299X

Unlike in the related area of bioinformatics, few books currently exist that document the techniques, tools, and algorithms of chemoinformatics. Bringing together worldwide experts in the field, the Handbook of Chemoinformatics Algorithms provides an overview of the most common chemoinformatics algorithms in a single source.After a historical persp

Mathematical Models and Methods for Ab Initio Quantum Chemistry

Mathematical Models and Methods for Ab Initio Quantum Chemistry
Author: M. Defranceschi
Publisher: Springer Science & Business Media
Total Pages: 247
Release: 2012-12-06
Genre: Science
ISBN: 3642572375

On the occasion of the fourth International Conference on Industrial and Applied Mathematics!, we decided to organize a sequence of 4 minisymposia devoted to the mathematical aspects and the numerical aspects of Quantum Chemistry. Our goal was to bring together scientists from different communities, namely mathematicians, experts at numerical analysis and computer science, chemists, just to see whether this heterogeneous set of lecturers can produce a rather homogeneous presentation of the domain to an uninitiated audience. To the best of our knowledgde, nothing of this kind had never been tempted so far. It seemed to us that it was the good time for doing it, both . because the interest of applied mathematicians into the world of computational chemistry has exponentially increased in the past few years, and because the community of chemists feels more and more concerned with the numerical issues. Indeed, in the early years of Quantum Chemistry, the pioneers (Coulson, Mac Weeny, just to quote two of them) used to solve fundamental equations modelling toy systems which could be simply numerically handled in view of their very limited size. The true difficulty arose with the need to model larger systems while possibly taking into account their interaction with their environment. Hand calculations were no longer possible, and computing science came into the picture.

Molecular Similarity in Drug Design

Molecular Similarity in Drug Design
Author: P.M. Dean
Publisher: Springer Science & Business Media
Total Pages: 358
Release: 2012-12-06
Genre: Science
ISBN: 9401113505

Molecular similarity searching is fast becoming a key tool in organic chemistry. In this book, the editor has brought together an international team of authors, each working at the forefront of this technology, providing a timely and concise overview of current research. The chapters focus principally on those methods which have reached sufficient maturity to be of immediate practical use in molecular design.