Computational Learning Approaches to Data Analytics in Biomedical Applications

Computational Learning Approaches to Data Analytics in Biomedical Applications
Author: Khalid Al-Jabery
Publisher: Academic Press
Total Pages: 312
Release: 2019-11-20
Genre: Technology & Engineering
ISBN: 0128144831

Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor

Clinical Text Mining

Clinical Text Mining
Author: Hercules Dalianis
Publisher: Springer
Total Pages: 192
Release: 2018-05-14
Genre: Computers
ISBN: 3319785036

This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book’s closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters. The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.

Biomedical Data Mining for Information Retrieval

Biomedical Data Mining for Information Retrieval
Author: Sujata Dash
Publisher: John Wiley & Sons
Total Pages: 450
Release: 2021-08-24
Genre: Computers
ISBN: 111971124X

BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.

Handbook of Data Science Approaches for Biomedical Engineering

Handbook of Data Science Approaches for Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
Total Pages: 320
Release: 2019-11-13
Genre: Science
ISBN: 0128183195

Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more

Biomedical Natural Language Processing

Biomedical Natural Language Processing
Author: Kevin Bretonnel Cohen
Publisher: John Benjamins Publishing Company
Total Pages: 174
Release: 2014-02-15
Genre: Computers
ISBN: 9027271062

Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.

Methods in Biomedical Informatics

Methods in Biomedical Informatics
Author: Indra Neil Sarkar
Publisher: Academic Press
Total Pages: 589
Release: 2013-09-03
Genre: Computers
ISBN: 0124016847

Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. - Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications - Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. - Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.

Leveraging Biomedical and Healthcare Data

Leveraging Biomedical and Healthcare Data
Author: Firas Kobeissy
Publisher: Academic Press
Total Pages: 228
Release: 2018-11-23
Genre: Medical
ISBN: 012809561X

Leveraging Biomedical and Healthcare Data: Semantics, Analytics and Knowledge provides an overview of the approaches used in semantic systems biology, introduces novel areas of its application, and describes step-wise protocols for transforming heterogeneous data into useful knowledge that can influence healthcare and biomedical research. Given the astronomical increase in the number of published reports, papers, and datasets over the last few decades, the ability to curate this data has become a new field of biomedical and healthcare research. This book discusses big data text-based mining to better understand the molecular architecture of diseases and to guide health care decision. It will be a valuable resource for bioinformaticians and members of several areas of the biomedical field who are interested in understanding more about how to process and apply great amounts of data to improve their research. Includes at each section resource pages containing a list of available curated raw and processed data that can be used by researchers in the field Provides demonstrative and relevant examples that serve as a general tutorial Presents a list of algorithm names and computational tools available for basic and clinical researchers

Artificial Intelligence

Artificial Intelligence
Author: Marco Antonio Aceves-Fernandez
Publisher: BoD – Books on Demand
Total Pages: 466
Release: 2018-06-27
Genre: Computers
ISBN: 178923364X

Artificial intelligence (AI) is taking an increasingly important role in our society. From cars, smartphones, airplanes, consumer applications, and even medical equipment, the impact of AI is changing the world around us. The ability of machines to demonstrate advanced cognitive skills in taking decisions, learn and perceive the environment, predict certain behavior, and process written or spoken languages, among other skills, makes this discipline of paramount importance in today's world. Although AI is changing the world for the better in many applications, it also comes with its challenges. This book encompasses many applications as well as new techniques, challenges, and opportunities in this fascinating area.