The Ecology of Plant Secondary Metabolites

The Ecology of Plant Secondary Metabolites
Author: Glenn R. Iason
Publisher: Cambridge University Press
Total Pages: 361
Release: 2012-04-19
Genre: Nature
ISBN: 1107375703

Plant secondary metabolites (PSMs) such as terpenes and phenolic compounds are known to have numerous ecological roles, notably in defence against herbivores, pathogens and abiotic stresses and in interactions with competitors and mutualists. This book reviews recent developments in the field to provide a synthesis of the function, ecology and evolution of PSMs, revealing our increased awareness of their integrative role in connecting natural systems. It emphasises the multiple roles of secondary metabolites in mediating the interactions between organisms and their environment at a range of scales of ecological organisation, demonstrating how genes encoding for PSM biosynthetic enzymes can have effects from the cellular scale within individual plants all the way to global environmental processes. A range of recent methodological advances, including molecular, transgenic and metabolomic techniques, are illustrated and promising directions for future studies are identified, making this a valuable reference for researchers and graduate students in the field.

Secondary Metabolites in Soil Ecology

Secondary Metabolites in Soil Ecology
Author: Petr Karlovsky
Publisher: Springer Science & Business Media
Total Pages: 296
Release: 2008-01-03
Genre: Science
ISBN: 3540745432

Microbiologists and soil scientists will find this study compelling reading. It focuses on the role of bacterial, fungal and plant secondary metabolites in soil ecosystems. Our understanding of the biological function of secondary metabolites is surprisingly limited, considering our knowledge of their structural diversity and pharmaceutical activity. This book reviews functional aspects of secondary metabolite production, with a focus on interactions among soil organisms.

Plant Secondary Metabolism

Plant Secondary Metabolism
Author: David S. Seigler
Publisher: Springer Science & Business Media
Total Pages: 766
Release: 2012-12-06
Genre: Science
ISBN: 1461549132

Life has evolved as a unified system; no organism exists similar role also has been suggested for fatty acids from alone, but each is in intimate contact with other organisms cyanolipids. Nonprotein amino acids, cyanogenic glyco and its environment. Historically, it was easier for workers sides, and the non-fatty-acid portion of cyanolipids also are in various disciplines to delimit artificially their respective incorporated into primary metabolites during germination. areas of research, rather than attempt to understand the entire Secondary metabolites of these structural types are accumu system of living organisms. This was a pragmatic and neces lated in large quantities in the seeds of several plant groups sary way to develop an understanding for the various parts. where they probably fulfill an additional function as deter We are now at a point, however, where we need to investi rents to general predation. gate those things common to the parts and, specifically, those The second type of relationship involves interaction of things that unify the parts. The fundamental aspects of many plants with other organisms and with their environment. Bio of these interactions are chemical in nature. Plants constitute logical interactions must be viewed in the light of evolution an essential part of all life systems; phytochemistry provides ary change and the coadaptation, or perhaps coevolution, of a medium for linking several fields of study.

Herbivores: Their Interactions with Secondary Plant Metabolites

Herbivores: Their Interactions with Secondary Plant Metabolites
Author:
Publisher: Academic Press
Total Pages: 506
Release: 2012-12-02
Genre: Science
ISBN: 0080925456

This volume presents the latest research on herbivores, aquatic and terrestrial mammals and insects. The Second Edition, written almost entirely by new authors, effectively complements the initial work. It includes advances in molecular biology and microbiology, ecology, and evolutionary theory that have been achieved since the first edition was published in 1979. The book also incorporates relatively new methodologies in the area of molecular biology, like protein purification and gene cloning. Volume II, Ecological and Evolutionary Processes, also opens up entirely new subjects: The discussions of interactions have expanded to include phenomena at higher trophic levels, such as predation and microbial processing and other environmental influences. Both this and Volume I, The Chemical Participants, will be of interest to chemists, biochemists, plant and insect ecologists, evolutionary biologists, physiologists, entomologists, and agroecologists interested in both crop and animal science. - Presents coevolution of herbivores and host plants - Examines resource availability and its effects on secondary metabolism and herbivores - Studies physiology and biochemistry of adaptation to hosts - Includes tri-trophic interactions involving predators and microbes

Co-Evolution of Secondary Metabolites

Co-Evolution of Secondary Metabolites
Author: Jean-Michel Mérillon
Publisher: Springer
Total Pages: 973
Release: 2020-02-24
Genre: Science
ISBN: 9783319963983

This Reference Work is devoted to plant secondary metabolites and their evolutionary adaptation to different hosts and pests. Secondary metabolites play an important biological role in plants’ defence against herbivores, abiotic stresses and pathogens, and they also attract beneficial organisms such as pollinators. In this work, readers will find a comprehensive review of the phytochemical diversity, modification and adaptation of secondary metabolites, and the consequences of their co-evolution with plant parasites, pollinators, and herbivores. Chapters from expert contributors are organised into twelve sections that collate the current knowledge in intra-/inter-specific diversity in plant secondary metabolites, changes in secondary metabolites during plants’ adaptation to different environmental conditions, and co-evolution of host-parasite metabolites. Among the twelve themed parts, readers will also discover expert analysis on the genetics and chemical ecology evolution of secondary metabolites, and particular attention is also given to allelochemicals, bioactive molecules in plant defence and the evolution of sensory perception in vertebrates. This reference work will appeal to students, researchers and professionals interested in the field of plant pathology, plant breeding, biotechnology, agriculture and phytochemistry.

Plant-Environment Interaction

Plant-Environment Interaction
Author: Mohamed Mahgoub Azooz
Publisher: John Wiley & Sons
Total Pages: 361
Release: 2015-11-30
Genre: Science
ISBN: 1119081025

The increase in global population, urbanization and industrialization is resulting in the conversion of cultivated land into wasteland. Providing food from these limited resources to an ever-increasing population is one of the biggest challenges that present agriculturalists and plant scientists are facing. Environmental stresses make this situation even graver. Plants on which mankind is directly or indirectly dependent exhibit various mechanisms for their survival. Adaptability of the plants to changing environment is a matter of concern for plant biologists trying to reach the goal of food security. Despite the induction of several tolerance mechanisms, sensitive plants often fail to withstand these environmental extremes. Using new technological approaches has become essential and imperative. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress throws light on the changing environment and the sustainability of plants under these conditions. It contains the most up-to-date research and comprehensive detailed discussions in plant physiology, climate change, agronomy and forestry, sometimes from a molecular point of view, to convey in-depth understanding of the effects of environmental stress in plants, their responses to the environment, how to mitigate the negative effects and improve yield under stress. This edited volume is written by expert plant biologists from around the world, providing invaluable knowledge to graduate and undergraduate students in plant biochemistry, food chemistry, plant physiology, molecular biology, plant biotechnology, and environmental sciences. This book updates scientists and researchers with the very latest information and sustainable methods used for stress tolerance, which will also be of considerable interest to plant based companies and institutions concerned with the campaign of food security.

Plant Secondary Metabolites

Plant Secondary Metabolites
Author: Harinder P.S. Makkar
Publisher: Humana Press
Total Pages: 130
Release: 2007-07-06
Genre: Science
ISBN: 9781588299932

Plant Secondary Metabolites provides reliable assays to meet the challenge of fulfilling the huge demand for feed. It details plant-animal interactions and presents methodologies that may also be used to determine plant secondary metabolites in human food. In addition, the volume contains methods for analysis of some important plant secondary metabolites, which are written in a recipe-like format designed for direct practical use.

Ecological Biochemistry

Ecological Biochemistry
Author: Gerd-Joachim Krauss
Publisher: John Wiley & Sons
Total Pages: 442
Release: 2015-01-12
Genre: Science
ISBN: 3527316507

The first stand-alone textbook for at least ten years on this increasingly hot topic in times of global climate change and sustainability in ecosystems. Ecological biochemistry refers to the interaction of organisms with their abiotic environment and other organisms by chemical means. Biotic and abiotic factors determine the biochemical flexibility of organisms, which otherwise easily adapt to environmental changes by altering their metabolism. Sessile plants, in particular, have evolved intricate biochemical response mechanisms to fit into a changing environment. This book covers the chemistry behind these interactions, bottom up from the atomic to the system's level. An introductory part explains the physico-chemical basis and biochemical roots of living cells, leading to secondary metabolites as crucial bridges between organisms and the respective ecosystem. The focus then shifts to the biochemical interactions of plants, fungi and bacteria within terrestrial and aquatic ecosystems with the aim of linking biochemical insights to ecological research, also in human-influenced habitats. A section is devoted to methodology, which allows network-based analyses of molecular processes underlying systems phenomena. A companion website offering an extended version of the introductory chapter on Basic Biochemical Roots is available at http://www.wiley.com/go/Krauss/Nies/EcologicalBiochemistry

Plant Secondary Metabolites

Plant Secondary Metabolites
Author: Alan Crozier
Publisher: John Wiley & Sons
Total Pages: 384
Release: 2008-04-15
Genre: Technology & Engineering
ISBN: 0470994134

Plant secondary metabolites have been a fertile area of chemical investigation for many years, driving the development of both analytical chemistry and of new synthetic reactions and methodologies. The subject is multi-disciplinary with chemists, biochemists and plant scientists all contributing to our current understanding. In recent years there has been an upsurge in interest from other disciplines, related to the realisation that secondary metabolites are dietary components that may have a considerable impact on human health, and to the development of gene technology that permits modulation of the contents of desirable and undesirable components. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet addresses this wider interest by covering the main groups of natural products from a chemical and biosynthetic perspective with illustrations of how genetic engineering can be applied to manipulate levels of secondary metabolites of economic value as well as those of potential importance in diet and health. These descriptive chapters are augmented by chapters showing where these products are found in the diet, how they are metabolised and reviewing the evidence for their beneficial bioactivity.