The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles

The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles
Author: John H. Cushman
Publisher: Springer Science & Business Media
Total Pages: 480
Release: 2013-04-17
Genre: Science
ISBN: 940158849X

Porous media are ubiquitous throughout nature and in many modern technologies. Because of their omnipresent nature, porous media are studied to one degree or another in almost all branches of science and engineering. This text is an outgrowth of a two-semester graduate course on multiscale porous media offered to students in applied math, physics, chemistry, engineering (civil, chemical, mechanical, agricultural), and environmental and soil science. The text is largely based on Dr Cushmans' groups efforts to build a rational approach to studying porous media over a hierarchy of spatial and temporal scales. No other text covers porous media on scales ranging from angstroms to miles. Nor does any other text develop and use such a diversity of tools for their study. The text is designed to be self-contained, as it presents all relevant mathematical and physical constructs.

The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles

The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles
Author: John H. Cushman
Publisher: Springer
Total Pages: 469
Release: 2014-03-14
Genre: Science
ISBN: 9789401588508

Porous media are ubiquitous throughout nature and in many modern technologies. Because of their omnipresent nature, porous media are studied to one degree or another in almost all branches of science and engineering. This text is an outgrowth of a two-semester graduate course on multiscale porous media offered to students in applied math, physics, chemistry, engineering (civil, chemical, mechanical, agricultural), and environmental and soil science. The text is largely based on Dr Cushmans' groups efforts to build a rational approach to studying porous media over a hierarchy of spatial and temporal scales. No other text covers porous media on scales ranging from angstroms to miles. Nor does any other text develop and use such a diversity of tools for their study. The text is designed to be self-contained, as it presents all relevant mathematical and physical constructs.

Gas Transport in Porous Media

Gas Transport in Porous Media
Author: Clifford K. Ho
Publisher: Springer Science & Business Media
Total Pages: 442
Release: 2006-10-07
Genre: Science
ISBN: 140203962X

CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.

Modeling Transport Phenomena in Porous Media with Applications

Modeling Transport Phenomena in Porous Media with Applications
Author: Malay K. Das
Publisher: Springer
Total Pages: 250
Release: 2017-11-21
Genre: Technology & Engineering
ISBN: 3319698664

This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.

The Physics of Composite and Porous Media

The Physics of Composite and Porous Media
Author: T. J. T. (Tim) Spanos
Publisher: CRC Press
Total Pages: 286
Release: 2017-11-06
Genre: Science
ISBN: 1498746721

Building on the success of T.J.T. Spanos's previous book The Thermophysics of Porous Media, The Physics of Composite and Porous Media explains non-linear field theory that describes how physical processes occur in the earth. It describes physical processes associated with the interaction of the various phases at the macroscale (the scale at which continuum equations are established) and how these interactions give rise to additional physical processes at the megascale (the scale orders of magnitude larger at which a continuum description may once again be established). Details are also given on how experimental, numerical and theoretical work on this subject fits together. This book will be of interest to graduate students and academic researchers working on understanding the physical process in the earth, in addition to those working in the oil and hydrogeology industries.

Handbook of Porous Media

Handbook of Porous Media
Author: Kambiz Vafai
Publisher: CRC Press
Total Pages: 946
Release: 2015-06-23
Genre: Science
ISBN: 1439885575

Handbook of Porous Media, Third Edition offers a comprehensive overview of the latest theories on flow, transport, and heat-exchange processes in porous media. It also details sophisticated porous media models which can be used to improve the accuracy of modeling in a variety of practical applications. Featuring contributions from leading experts i

The Thermophysics of Porous Media

The Thermophysics of Porous Media
Author: T.J.T. Spanos
Publisher: CRC Press
Total Pages: 233
Release: 2001-11-28
Genre: Mathematics
ISBN: 1420026127

Models for the mechanical behavior of porous media introduced more than 50 years ago are still relied upon today, but more recent work shows that, in some cases, they may violate the laws of thermodynamics. In The Thermophysics of Porous Media, the author shows that physical consistency requires a unique description of dynamic processes that involv

Potential Method in Mathematical Theories of Multi-Porosity Media

Potential Method in Mathematical Theories of Multi-Porosity Media
Author: Merab Svanadze
Publisher: Springer Nature
Total Pages: 313
Release: 2019-11-01
Genre: Mathematics
ISBN: 3030280225

This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green’s formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity.

The Handbook of Groundwater Engineering

The Handbook of Groundwater Engineering
Author: Jacques W. Delleur
Publisher: CRC Press
Total Pages: 1006
Release: 2010-12-12
Genre: Technology & Engineering
ISBN: 9781420048582

Due to the increasing demand for adequate water supply caused by the augmenting global population, groundwater production has acquired a new importance. In many areas, surface waters are not available in sufficient quantity or quality. Thus, an increasing demand for groundwater has resulted. However, the residence of time of groundwater can be of the order of thousands of years while surface waters is of the order of days. Therefore, substantially more attention is warranted for transport processes and pollution remediation in groundwater than for surface waters. Similarly, pollution remediation problems in groundwater are generally complex. This excellent, timely resource covers the field of groundwater from an engineering perspective, comprehensively addressing the range of subjects related to subsurface hydrology. It provides a practical treatment of the flow of groundwater, the transport of substances, the construction of wells and well fields, the production of groundwater, and site characterization and remediation of groundwater pollution. No other reference specializes in groundwater engineering to such a broad range of subjects. Its use extends to: The engineer designing a well or well field The engineer designing or operating a landfill facility for municipal or hazardous wastes The hydrogeologist investigating a contaminant plume The engineer examining the remediation of a groundwater pollution problem The engineer or lawyer studying the laws and regulations related to groundwater quality The scientist analyzing the mechanics of solute transport The geohydrologist assessing the regional modeling of aquifers The geophysicist determining the characterization of an aquifer The cartographer mapping aquifer characteristics The practitioner planning a monitoring network