Three-Dimensional Integrated Circuit Design

Three-Dimensional Integrated Circuit Design
Author: Vasilis F. Pavlidis
Publisher: Newnes
Total Pages: 770
Release: 2017-07-04
Genre: Technology & Engineering
ISBN: 0124104843

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization

Three-Dimensional Integrated Circuit Design

Three-Dimensional Integrated Circuit Design
Author: Yuan Xie
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 2009-12-02
Genre: Technology & Engineering
ISBN: 144190784X

We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore’s law. This observation stated that transistor density in integrated circuits doubles every 1. 5–2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore’s law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).

Three Dimensional System Integration

Three Dimensional System Integration
Author: Antonis Papanikolaou
Publisher: Springer Science & Business Media
Total Pages: 251
Release: 2010-12-07
Genre: Architecture
ISBN: 1441909621

Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve this type of end product, changes in the entire manufacturing and design process of electronic systems are taking place. This book provides readers with an accessible tutorial on a broad range of topics essential to the non-expert in 3D System Integration. It is an invaluable resource for anybody in need of an overview of the 3D manufacturing and design chain.

3D IC Stacking Technology

3D IC Stacking Technology
Author: Banqiu Wu
Publisher: McGraw Hill Professional
Total Pages: 543
Release: 2011-10-14
Genre: Technology & Engineering
ISBN: 0071741968

The latest advances in three-dimensional integrated circuit stacking technology With a focus on industrial applications, 3D IC Stacking Technology offers comprehensive coverage of design, test, and fabrication processing methods for three-dimensional device integration. Each chapter in this authoritative guide is written by industry experts and details a separate fabrication step. Future industry applications and cutting-edge design potential are also discussed. This is an essential resource for semiconductor engineers and portable device designers. 3D IC Stacking Technology covers: High density through silicon stacking (TSS) technology Practical design ecosystem for heterogeneous 3D IC products Design automation and TCAD tool solutions for through silicon via (TSV)-based 3D IC stack Process integration for TSV manufacturing High-aspect-ratio silicon etch for TSV Dielectric deposition for TSV Barrier and seed deposition Copper electrodeposition for TSV Chemical mechanical polishing for TSV applications Temporary and permanent bonding Assembly and test aspects of TSV technology

Handbook of 3D Integration, Volume 4

Handbook of 3D Integration, Volume 4
Author: Paul D. Franzon
Publisher: John Wiley & Sons
Total Pages: 655
Release: 2019-01-25
Genre: Technology & Engineering
ISBN: 3527697063

This fourth volume of the landmark handbook focuses on the design, testing, and thermal management of 3D-integrated circuits, both from a technological and materials science perspective. Edited and authored by key contributors from top research institutions and high-tech companies, the first part of the book provides an overview of the latest developments in 3D chip design, including challenges and opportunities. The second part focuses on the test methods used to assess the quality and reliability of the 3D-integrated circuits, while the third and final part deals with thermal management and advanced cooling technologies and their integration.

Wafer Level 3-D ICs Process Technology

Wafer Level 3-D ICs Process Technology
Author: Chuan Seng Tan
Publisher: Springer Science & Business Media
Total Pages: 365
Release: 2009-06-29
Genre: Technology & Engineering
ISBN: 0387765344

This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

3D Integration in VLSI Circuits

3D Integration in VLSI Circuits
Author: Katsuyuki Sakuma
Publisher: CRC Press
Total Pages: 211
Release: 2018-04-17
Genre: Technology & Engineering
ISBN: 1351779826

Currently, the term 3D integration includes a wide variety of different integration methods, such as 2.5-dimensional (2.5D) interposer-based integration, 3D integrated circuits (3D ICs), 3D systems-in-package (SiP), 3D heterogeneous integration, and monolithic 3D ICs. The goal of this book is to provide readers with an understanding of the latest challenges and issues in 3D integration. TSVs are not the only technology element needed for 3D integration. There are numerous other key enabling technologies required for 3D integration, and the speed of the development in this emerging field is very rapid. To provide readers with state-of-the-art information on 3D integration research and technology developments, each chapter has been contributed by some of the world’s leading scientists and experts from academia, research institutes, and industry from around the globe. Covers chip/wafer level 3D integration technology, memory stacking, reconfigurable 3D, and monolithic 3D IC. Discusses the use of silicon interposer and organic interposer. Presents architecture, design, and technology implementations for 3D FPGA integration. Describes oxide bonding, Cu/SiO2 hybrid bonding, adhesive bonding, and solder bonding. Addresses the issue of thermal dissipation in 3D integration.

Design-for-Test and Test Optimization Techniques for TSV-based 3D Stacked ICs

Design-for-Test and Test Optimization Techniques for TSV-based 3D Stacked ICs
Author: Brandon Noia
Publisher: Springer Science & Business Media
Total Pages: 260
Release: 2013-11-19
Genre: Technology & Engineering
ISBN: 3319023780

This book describes innovative techniques to address the testing needs of 3D stacked integrated circuits (ICs) that utilize through-silicon-vias (TSVs) as vertical interconnects. The authors identify the key challenges facing 3D IC testing and present results that have emerged from cutting-edge research in this domain. Coverage includes topics ranging from die-level wrappers, self-test circuits, and TSV probing to test-architecture design, test scheduling, and optimization. Readers will benefit from an in-depth look at test-technology solutions that are needed to make 3D ICs a reality and commercially viable.

3D Integration for NoC-based SoC Architectures

3D Integration for NoC-based SoC Architectures
Author: Abbas Sheibanyrad
Publisher: Springer Science & Business Media
Total Pages: 280
Release: 2010-11-08
Genre: Technology & Engineering
ISBN: 1441976183

This book presents the research challenges that are due to the introduction of the 3rd dimension in chips for researchers and covers the whole architectural design approach for 3D-SoCs. Nowadays the 3D-Integration technologies, 3D-Design techniques, and 3D-Architectures are emerging as interesting, truly hot, broad topics. The present book gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures. This book includes contributions from high level international teams working in this field.