Time-Dependent Fracture Mechanics

Time-Dependent Fracture Mechanics
Author: Dominique P. Miannay
Publisher: Springer Science & Business Media
Total Pages: 480
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461301556

Intended for engineers, researchers, and graduate students dealing with materials science, structural design, and nondestructive testing and evaluation, this book represents a continuation of the author's "Fracture Mechanics" (1997). It will appeal to a variety of audiences: The discussion of design codes and procedures will be of use to practicing engineers, particularly in the nuclear, aerospace, and pipeline industries; the extensive bibliography and discussion of recent results will make it a useful reference for academic researchers; and graduate students will find the clear explanations and worked examples useful for learning the field. The book begins with a general treatment of fracture mechanics in terms of material properties and loading and provides up-to-date reviews of the ductile-brittle transition in steels and of methods for analyzing the risk of fracture. It then discusses the dynamics of fracture and creep in homogeneous and isotropic media, including discussions of high-loading-rate characteristics, the behavior of stationary cracks in elastic media under stress, and the propagation of cracks in elastic media. This is followed by an analysis of creep and crack initiation and propagation, describing, for example, the morphology and incubation times of crack initiation and growth and the effects of high temperatures. The book concludes with treatments of cycling deformation and fatigue, creep-fatigue fractures, and crack initiation and propagation. Problems at the end of each chapter serve to reinforce and test the student's knowledge and to extend some of the discussions in the text. Solutions to half of the problems are provided.

Fracture Mechanics of Rock

Fracture Mechanics of Rock
Author: Barry Kean Atkinson
Publisher: Elsevier
Total Pages: 547
Release: 2015-05-11
Genre: Science
ISBN: 1483292746

The analysis of crack problems through fracture mechanics has been applied to the study of materials such as glass, metals and ceramics because relatively simple fracture criteria describe the failure of these materials. The increased attention paid to experimental rock fracture mechanics has led to major contributions to the solving of geophysical problems.The text presents a concise treatment of the physics and mathematics of a representative selection of problems from areas such as earthquake mechanics and prediction, hydraulic fracturing, hot dry rock geothermal energy, fault mechanics, and dynamic fragmentation.

Advanced Fracture Mechanics and Structural Integrity

Advanced Fracture Mechanics and Structural Integrity
Author: Ashok Saxena
Publisher: CRC Press
Total Pages: 398
Release: 2019-02-06
Genre: Technology & Engineering
ISBN: 1351004042

Advanced Fracture Mechanics and Structural Integrity is organized to cover quantitative descriptions of crack growth and fracture phenomena. The mechanics of fracture are explained, emphasizing elastic-plastic and time-dependent fracture mechanics. Applications are presented, using examples from power generation, aerospace, marine, and chemical industries, with focus on predicting the remaining life of structural components and advanced testing metods for structural materials. Numerous examples and end-of-chapter problems are provided, along with references to encourage further study.The book is written for use in an advanced graduate course on fracture mechanics or structural integrity.

Nonlinear Fracture Mechanics for Engineers

Nonlinear Fracture Mechanics for Engineers
Author: Ashok Saxena
Publisher: CRC Press
Total Pages: 488
Release: 1998-03-31
Genre: Science
ISBN: 9780849394966

Fracture mechanics is an essential tool for engineers in a number of different engineering disciplines. For example, an engineer in a metals- or plastics-dependent industry might use fracture mechanics to evaluate and characterize materials, while another in aerospace or construction might use fracture mechanics-based methods for product design and service life-time estimation. This balanced treatment, which covers both applied engineering and mathematical aspects of the topic, provides a much-needed multidisciplinary treatment of the field suitable for the many diverse applications of the subject. While texts on linear elastic fracture mechanics abound, no complete treatments of the complex topic of nonlinear fracture mechanics have been available in a textbook format - until now. Written by an author with extensive industry credentials as well as academic experience, Nonlinear Fracture Mechanics for Engineers examines nonlinear fracture mechanics and its applications in mechanics, materials testing, and life prediction of components. The book includes the first-ever complete examination of creep and creep-fatigue crack growth. Examples and problems reinforce the concepts presented. A complete chapter on applications and case studies involving nonlinear fracture mechanics completes this thorough evaluation of this dynamic field of study.

Geologic Fracture Mechanics

Geologic Fracture Mechanics
Author: Richard A. Schultz
Publisher: Cambridge University Press
Total Pages: 611
Release: 2019-08-08
Genre: Business & Economics
ISBN: 1107189993

Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.

Dynamic Fracture

Dynamic Fracture
Author: K. Ravi-Chandar
Publisher: Elsevier
Total Pages: 265
Release: 2004-10-16
Genre: Science
ISBN: 0080472559

Dynamic fracture in solids has attracted much attention for over a century from engineers as well as physicists due both to its technological interest and to inherent scientific curiosity. Rapidly applied loads are encountered in a number of technical applications. In some cases such loads might be applied deliberately, as for example in problems of blasting, mining, and comminution or fragmentation; in other cases, such dynamic loads might arise from accidental conditions. Regardless of the origin of the rapid loading, it is necessary to understand the mechanisms and mechanics of fracture under dynamic loading conditions in order to design suitable procedures for assessing the susceptibility to fracture. Quite apart from its repercussions in the area of structural integrity, fundamental scientific curiosity has continued to play a large role in engendering interest in dynamic fracture problems In-depth coverage of the mechanics, experimental methods, practical applications Summary of material response of different materials Discussion of unresolved issues in dynamic fracture

Deformation and Fracture Mechanics of Engineering Materials

Deformation and Fracture Mechanics of Engineering Materials
Author: Richard W. Hertzberg
Publisher:
Total Pages: 714
Release: 1989-01-17
Genre: Science
ISBN:

This Third Edition of the well-received engineering materials book has been completely updated, and now contains over 1,100 citations. Thorough enough to serve as a text, and up-to-date enough to serve as a reference. There is a new chapter on strengthening mechanisms in metals, new sections on composites and on superlattice dislocations, expanded treatment of cast and powder-produced conventional alloys, plastics, quantitative fractography, JIC and KIEAC test procedures, fatigue, and failure analysis. Includes examples and case histories.