Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars

Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars
Author: Donald Rapp
Publisher: Springer
Total Pages: 244
Release: 2018-01-19
Genre: Technology & Engineering
ISBN: 3319726943

This book presents a detailed, independent review of essentially all the technical aspects of “in situ resource utilization” (ISRU), offering the first in-depth discussion of the issues of crew size, ascent from Mars, and ISRU processes. It also provides data on lunar ISRU not previously available to the public. This new edition provides a short synopsis of the Mars mission, and discusses various topics, including solid oxide electrolysis, which promises to be an important part of the ISRU picture. In addition, it explores ancillary needs for Mars ISRU and how to obtain water on Mars. It is the go-to resource for professionals involved in planning space missions or working on ISRU processes, as well as students planning careers in space technology.

Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars

Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars
Author: Donald Rapp
Publisher: Springer Science & Business Media
Total Pages: 203
Release: 2012-11-28
Genre: Technology & Engineering
ISBN: 3642327621

This book carries out approximate estimates of the costs of implementing ISRU on the Moon and Mars. It is found that no ISRU process on the Moon has much merit. ISRU on Mars can save a great deal of mass, but there is a significant cost in prospecting for resources and validating ISRU concepts. Mars ISRU might have merit, but not enough data are available to be certain. In addition, this book provides a detailed review of various ISRU technologies. This includes three approaches for Mars ISRU based on processing only the atmosphere: solid oxide electrolysis, reverse water gas shift reaction (RWGS), and absorbing water vapor directly from the atmosphere. It is not clear that any of these technologies are viable although the RWGS seems to have the best chance. An approach for combining hydrogen with the atmospheric resource is chemically very viable, but hydrogen is needed on Mars. This can be approached by bringing hydrogen from Earth or obtaining water from near-surface water deposits in the soil. Bringing hydrogen from Earth is problematic, so mining the regolith to obtain water seems to be the only way to go. This will require a sizable campaign to locate and validate useable water resources. Technologies for lunar ISRU are also reviewed, even though none of them provide significant benefits to near-term lunar missions. These include oxygen from lunar regolith, solar wind volatiles from regolith, and extraction of polar ice from permanently shaded craters.

Humans to Mars

Humans to Mars
Author: David S. F. Portree
Publisher:
Total Pages: 164
Release: 2001
Genre: Space flight to Mars
ISBN:

Advances in Manufacturing and Processing of Materials and Structures

Advances in Manufacturing and Processing of Materials and Structures
Author: Yoseph Bar-Cohen
Publisher: CRC Press
Total Pages: 544
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 1351867962

Advances in Manufacturing and Processing of Materials and Structures cover the latest advances in materials and structures in manufacturing and processing including additive and subtractive processes. It's intended to provide a compiled resource that reviews details of the advances that have been made in recent years in manufacturing and processing of materials and structures. A key development incorporated within this book is 3D printing, which is being used to produce complex parts including composites with odd shape fibers, as well as tissue and body organs. This book has been tailored for engineers, scientists and practitioners in different fields such as aerospace, mechanical engineering, materials science and biomedicine. Biomimetic principles have also been integrated. Features Provides the latest state-of-the art on different manufacturing processes, including a biomimetics viewpoint Offers broad coverage of advances in materials and manufacturing Written by chapter authors who are world-class researchers in their respective fields Provides in-depth presentation of the latest 3D and 4D technologies related to various manufacturing disciplines Provides substantial references in each chapter to enhance further study

Exploring the Martian Moons

Exploring the Martian Moons
Author: Manfred "Dutch" von Ehrenfried
Publisher: Springer
Total Pages: 271
Release: 2017-04-11
Genre: Technology & Engineering
ISBN: 3319527002

This book explores the once popular idea of 'Flexible Path' in terms of Mars, a strategy that would focus on a manned orbital mission to Mars's moons rather than the more risky, expensive and time-consuming trip to land humans on the Martian surface. While currently still not the most popular idea, this mission would take advantage of the operational, scientific and engineering lessons to be learned from going to Mars's moons first. Unlike a trip to the planet's surface, an orbital mission avoids the dangers of the deep gravity well of Mars and a very long stay on the surface. This is analogous to Apollo 8 and 10, which preceded the landing on the Moon of Apollo 11. Furthermore, a Mars orbital mission could be achieved at least five years, possibly 10 before a landing mission. Nor would an orbital mission require all of the extra vehicles, equipment and supplies needed for a landing and a stay on the planet for over a year. The cost difference between the two types of missions is in the order of tens of billions of dollars. An orbital mission to Deimos and Phobos would provide an early opportunity to acquire scientific knowledge of the moons and Mars as well, since some of the regolith is presumed to be soil ejected from Mars. It may also offer the opportunity to deploy scientific instruments on the moons which would aid subsequent missions. It would provide early operational experience in the Mars environment without the risk of a landing. The author convincingly argues this experience would enhance the probability of a safe and successful Mars landing by NASA at a later date, and lays out the best way to approach an orbital mission in great detail. Combining path-breaking science with achievable goals on a fast timetable, this approach is the best of both worlds--and our best path to reaching Mars safely in the future.

A City on Mars

A City on Mars
Author: Kelly Weinersmith
Publisher: Penguin
Total Pages: 449
Release: 2023-11-07
Genre: Science
ISBN: 1984881736

* THE INSTANT NEW YORK TIMES BESTSELLER * Scientific American’s #1 Book for 2023 * A New York Times Book Review Editors' Choice * A Times Best Science and Environment Book of 2023 * “Exceptional. . . Forceful, engaging and funny . . . This book will make you happy to live on this planet — a good thing, because you’re not leaving anytime soon.” —New York Times Book Review From the bestselling authors of Soonish, a brilliant and hilarious off-world investigation into space settlement Earth is not well. The promise of starting life anew somewhere far, far away—no climate change, no war, no Twitter—beckons, and settling the stars finally seems within our grasp. Or is it? Critically acclaimed, bestselling authors Kelly and Zach Weinersmith set out to write the essential guide to a glorious future of space settlements, but after years of research, they aren’t so sure it’s a good idea. Space technologies and space business are progressing fast, but we lack the knowledge needed to have space kids, build space farms, and create space nations in a way that doesn’t spark conflict back home. In a world hurtling toward human expansion into space, A City on Mars investigates whether the dream of new worlds won’t create nightmares, both for settlers and the people they leave behind. In the process, the Weinersmiths answer every question about space you’ve ever wondered about, and many you’ve never considered: Can you make babies in space? Should corporations govern space settlements? What about space war? Are we headed for a housing crisis on the Moon’s Peaks of Eternal Light—and what happens if you’re left in the Craters of Eternal Darkness? Why do astronauts love taco sauce? Speaking of meals, what’s the legal status of space cannibalism? With deep expertise, a winning sense of humor, and art from the beloved creator of Saturday Morning Breakfast Cereal, the Weinersmiths investigate perhaps the biggest questions humanity will ever ask itself—whether and how to become multiplanetary. Get in, we’re going to Mars.