Vascular Responses to Pathogens

Vascular Responses to Pathogens
Author: Felicity N.E. Gavins
Publisher: Academic Press
Total Pages: 254
Release: 2015-10-31
Genre: Medical
ISBN: 0128013257

Vascular Responses to Pathogens focuses on the growing research from leaders in the field for both the short and long-term impact of pathogens on the vasculature. It discusses various organisms, including bacteria, parasites, and viruses, and their role in key events leading to vascular disease. Formatted to discuss the topic of the interaction of pathogens with the vascular rather than individual diseases described separately, this reference demonstrates that common mechanisms are at play in many different diseases because they have a similar context, their vasculature. This all-inclusive reference book is a must-have tool for researchers and practicing clinicians in the areas of vascular biology, microvasculature, cardiology, and infectious disease. - Covers a wide spectrum of organisms and provides analysis of pathogens and current therapeutic strategies in the context of their vasculature - Provides detailed perspectives on key components contributing to vascular pathogens from leaders in the field - Interfaces between both vascular biology and microbiology by encompassing information on how pathogens affect both macro and microvasculature - Includes coverage of the clinical aspects of sepsis and current therapeutic strategies and anti-sepsis drugs

Janeway's Immunobiology

Janeway's Immunobiology
Author: Kenneth Murphy
Publisher: Garland Science
Total Pages:
Release: 2010-06-22
Genre: Medical
ISBN: 9780815344575

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.

The Endothelium

The Endothelium
Author: Michel Félétou
Publisher: Morgan & Claypool Publishers
Total Pages: 309
Release: 2011
Genre: Science
ISBN: 1615041230

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References

Mechanisms of Vascular Disease

Mechanisms of Vascular Disease
Author: Robert Fitridge
Publisher: University of Adelaide Press
Total Pages: 589
Release: 2011
Genre: Medical
ISBN: 1922064009

New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.

Regulation of Tissue Oxygenation, Second Edition

Regulation of Tissue Oxygenation, Second Edition
Author: Roland N. Pittman
Publisher: Biota Publishing
Total Pages: 117
Release: 2016-08-18
Genre: Medical
ISBN: 1615047212

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.

Tissue Barriers in Disease, Injury and Regeneration

Tissue Barriers in Disease, Injury and Regeneration
Author: Nikolai V. Gorbunov
Publisher: Elsevier
Total Pages: 208
Release: 2021-06-19
Genre: Science
ISBN: 0128227567

Tissue Barriers in Disease, Injury and Regeneration focuses on the molecular and cellular fundamentals of homeostatic and defense responses of tissue barriers, covering the damaging impacts and exposure to pathogens and engineered nanomaterials. Sections emphasize the role of mesenchymal stoma, vascular, epithelial, telocyte, myofibroblast, lymphoid and reticuloendothelial cells, along with reactions that bridge the effects of ambient factors, medical treatments, drag delivery systems with alterations in barrier integrity, tissue/organ functions, and metabolic status. Other sections cover the role of progenitor cells of different origins in the remodeling and regeneration of tissue stroma, vasculature of blood-tissue barriers, and more. - Includes special emphasis on the role of mesenchymal stoma, vascular, epithelial, telocyte, myofibroblast, lymphoid and reticuloendothelial cells in the development of reactions that bridge the effects of ambient factors, medical treatments, drag delivery systems with alterations in barrier integrity, tissue/organ functions, and in metabolic status - Examines the role of progenitor cells of different origins in the remodeling and regeneration of tissue stroma, the vasculature of blood-tissue barriers, and mucosa and external epithelium

Inflammation and the Microcirculation

Inflammation and the Microcirculation
Author: D. Neil Granger
Publisher: Morgan & Claypool Publishers
Total Pages: 99
Release: 2010
Genre: Medical
ISBN: 1615041656

The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References