VLSI Circuits for Biomedical Applications

VLSI Circuits for Biomedical Applications
Author: Krzysztof Iniewski
Publisher: Artech House
Total Pages: 453
Release: 2008
Genre: Computers
ISBN: 1596933186

Supported with over 280 illustrations and over 160 equations, the book offers cutting-edge guidance on designing integrated circuits for wireless biosensing, body implants, biosensing interfaces, and molecular biology. You discover innovative design techniques and novel materials to help you achieve higher levels circuit and system performance.

Mobile Health

Mobile Health
Author: Sasan Adibi
Publisher: Springer
Total Pages: 1160
Release: 2015-02-18
Genre: Technology & Engineering
ISBN: 3319128175

This book offers a comprehensive report on the technological aspects of Mobile Health (mHealth) and discusses the main challenges and future directions in the field. It is divided into eight parts: (1) preventive and curative medicine; (2) remote health monitoring; (3) interoperability; (4) framework, architecture, and software/hardware systems; (5) cloud applications; (6) radio technologies and applications; (7) communication networks and systems; and (8) security and privacy mechanisms. The first two parts cover sensor-based and bedside systems for remotely monitoring patients’ health condition, which aim at preventing the development of health problems and managing the prognosis of acute and chronic diseases. The related chapters discuss how new sensing and wireless technologies can offer accurate and cost-effective means for monitoring and evaluating behavior of individuals with dementia and psychiatric disorders, such as wandering behavior and sleep impairments. The following two parts focus on architectures and higher level systems, and on the challenges associated with their interoperability and scalability, two important aspects that stand in the way of the widespread deployment of mHealth systems. The remaining parts focus on telecommunication support systems for mHealth, including radio technologies, communication and cloud networks, and secure health-related applications and systems. All in all, the book offers a snapshot of the state-of-art in mHealth systems, and addresses the needs of a multidisciplinary audience, including engineers, computer scientists, healthcare providers, and medical professionals, working in both academia and the industry, as well as stakeholders at government agencies and non-profit organizations.

VLSI

VLSI
Author: Tomasz Wojcicki
Publisher: CRC Press
Total Pages: 490
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 1351831437

Recently the world celebrated the 60th anniversary of the invention of the first transistor. The first integrated circuit (IC) was built a decade later, with the first microprocessor designed in the early 1970s. Today, ICs are a part of nearly every aspect of our daily lives. They help us live longer and more comfortably, and do more, faster. All this is possible because of the relentless search for new materials, circuit designs, and ideas happening on a daily basis at industrial and academic institutions around the globe. Showcasing the latest advances in very-large-scale integrated (VLSI) circuits, VLSI: Circuits for Emerging Applications provides a balanced view of industrial and academic developments beyond silicon and complementary metal–oxide–semiconductor (CMOS) technology. From quantum-dot cellular automata (QCA) to chips for cochlear implants, this must-have resource: Investigates the trend of combining multiple cores in a single chip to boost performance of the overall system Describes a novel approach to enable physically unclonable functions (PUFs) using intrinsic features of a VLSI chip Examines the VLSI implementations of major symmetric and asymmetric key cryptographic algorithms, hash functions, and digital signatures Discusses nonvolatile memories such as resistive random-access memory (Re-RAM), magneto-resistive RAM (MRAM), and floating-body RAM (FB-RAM) Explores organic transistors, soft errors, photonics, nanoelectromechanical (NEM) relays, reversible computation, bioinformatics, asynchronous logic, and more VLSI: Circuits for Emerging Applications presents cutting-edge research, design architectures, materials, and uses for VLSI circuits, offering valuable insight into the current state of the art of micro- and nanoelectronics.

Advanced VLSI Design and Testability Issues

Advanced VLSI Design and Testability Issues
Author: Suman Lata Tripathi
Publisher: CRC Press
Total Pages: 379
Release: 2020-08-18
Genre: Technology & Engineering
ISBN: 1000168158

This book facilitates the VLSI-interested individuals with not only in-depth knowledge, but also the broad aspects of it by explaining its applications in different fields, including image processing and biomedical. The deep understanding of basic concepts gives you the power to develop a new application aspect, which is very well taken care of in this book by using simple language in explaining the concepts. In the VLSI world, the importance of hardware description languages cannot be ignored, as the designing of such dense and complex circuits is not possible without them. Both Verilog and VHDL languages are used here for designing. The current needs of high-performance integrated circuits (ICs) including low power devices and new emerging materials, which can play a very important role in achieving new functionalities, are the most interesting part of the book. The testing of VLSI circuits becomes more crucial than the designing of the circuits in this nanometer technology era. The role of fault simulation algorithms is very well explained, and its implementation using Verilog is the key aspect of this book. This book is well organized into 20 chapters. Chapter 1 emphasizes on uses of FPGA on various image processing and biomedical applications. Then, the descriptions enlighten the basic understanding of digital design from the perspective of HDL in Chapters 2–5. The performance enhancement with alternate material or geometry for silicon-based FET designs is focused in Chapters 6 and 7. Chapters 8 and 9 describe the study of bimolecular interactions with biosensing FETs. Chapters 10–13 deal with advanced FET structures available in various shapes, materials such as nanowire, HFET, and their comparison in terms of device performance metrics calculation. Chapters 14–18 describe different application-specific VLSI design techniques and challenges for analog and digital circuit designs. Chapter 19 explains the VLSI testability issues with the description of simulation and its categorization into logic and fault simulation for test pattern generation using Verilog HDL. Chapter 20 deals with a secured VLSI design with hardware obfuscation by hiding the IC’s structure and function, which makes it much more difficult to reverse engineer.

Electronic Devices, Circuits, and Systems for Biomedical Applications

Electronic Devices, Circuits, and Systems for Biomedical Applications
Author: Suman Lata Tripathi
Publisher: Academic Press
Total Pages: 586
Release: 2021-04-28
Genre: Technology & Engineering
ISBN: 0323853692

Electronic Devices, Circuits, and Systems for Biomedical Applications: Challenges and Intelligent Approaches explains the latest information on the design of new technological solutions for low-power, high-speed efficient biomedical devices, circuits and systems. The book outlines new methods to enhance system performance, provides key parameters to explore the electronic devices and circuit biomedical applications, and discusses innovative materials that improve device performance, even for those with smaller dimensions and lower costs. This book is ideal for graduate students in biomedical engineering and medical informatics, biomedical engineers, medical device designers, and researchers in signal processing. - Presents major design challenges and research potential in biomedical systems - Walks readers through essential concepts in advanced biomedical system design - Focuses on healthcare system design for low power-efficient and highly-secured biomedical electronics

Ultra Low Power Bioelectronics

Ultra Low Power Bioelectronics
Author: Rahul Sarpeshkar
Publisher: Cambridge University Press
Total Pages: 909
Release: 2010-02-22
Genre: Technology & Engineering
ISBN: 1139485237

This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.

3D Integration in VLSI Circuits

3D Integration in VLSI Circuits
Author: Katsuyuki Sakuma
Publisher: CRC Press
Total Pages: 211
Release: 2018-04-17
Genre: Technology & Engineering
ISBN: 1351779826

Currently, the term 3D integration includes a wide variety of different integration methods, such as 2.5-dimensional (2.5D) interposer-based integration, 3D integrated circuits (3D ICs), 3D systems-in-package (SiP), 3D heterogeneous integration, and monolithic 3D ICs. The goal of this book is to provide readers with an understanding of the latest challenges and issues in 3D integration. TSVs are not the only technology element needed for 3D integration. There are numerous other key enabling technologies required for 3D integration, and the speed of the development in this emerging field is very rapid. To provide readers with state-of-the-art information on 3D integration research and technology developments, each chapter has been contributed by some of the world’s leading scientists and experts from academia, research institutes, and industry from around the globe. Covers chip/wafer level 3D integration technology, memory stacking, reconfigurable 3D, and monolithic 3D IC. Discusses the use of silicon interposer and organic interposer. Presents architecture, design, and technology implementations for 3D FPGA integration. Describes oxide bonding, Cu/SiO2 hybrid bonding, adhesive bonding, and solder bonding. Addresses the issue of thermal dissipation in 3D integration.

Top-Down Digital VLSI Design

Top-Down Digital VLSI Design
Author: Hubert Kaeslin
Publisher: Morgan Kaufmann
Total Pages: 599
Release: 2014-12-07
Genre: Technology & Engineering
ISBN: 0128007729

Top-Down VLSI Design: From Architectures to Gate-Level Circuits and FPGAs represents a unique approach to learning digital design. Developed from more than 20 years teaching circuit design, Doctor Kaeslin's approach follows the natural VLSI design flow and makes circuit design accessible for professionals with a background in systems engineering or digital signal processing. It begins with hardware architecture and promotes a system-level view, first considering the type of intended application and letting that guide your design choices. Doctor Kaeslin presents modern considerations for handling circuit complexity, throughput, and energy efficiency while preserving functionality. The book focuses on application-specific integrated circuits (ASICs), which along with FPGAs are increasingly used to develop products with applications in telecommunications, IT security, biomedical, automotive, and computer vision industries. Topics include field-programmable logic, algorithms, verification, modeling hardware, synchronous clocking, and more. - Demonstrates a top-down approach to digital VLSI design. - Provides a systematic overview of architecture optimization techniques. - Features a chapter on field-programmable logic devices, their technologies and architectures. - Includes checklists, hints, and warnings for various design situations. - Emphasizes design flows that do not overlook important action items and which include alternative options when planning the development of microelectronic circuits.

Ultra-Low-Voltage Frequency Synthesizer and Successive-Approximation Analog-to-Digital Converter for Biomedical Applications

Ultra-Low-Voltage Frequency Synthesizer and Successive-Approximation Analog-to-Digital Converter for Biomedical Applications
Author: Chung-Chih Hung
Publisher: Springer Nature
Total Pages: 231
Release: 2021-12-07
Genre: Technology & Engineering
ISBN: 3030888452

This book introduces the origin of biomedical signals and the operating principles behind them and introduces the characteristics of common biomedical signals for subsequent signal measurement and judgment. Since biomedical signals are captured by wearable devices, sensor devices, or implanted devices, these devices are all battery-powered to maintain long working time. We hope to reduce their power consumption to extend service life, especially for implantable devices, because battery replacement can only be done through surgery. Therefore, we must understand how to design low-power integrated circuits. Both implantable and in-vitro medical signal detectors require two basic components to collect and transmit biomedical signals: an analog-to-digital converter and a frequency synthesizer because these measured biomedical signals are wirelessly transmitted to the relevant receiving unit. The core unit of wireless transmission is the frequency synthesizer, which provides a wide frequency range and stable frequency to demonstrate the quality and performance of the wireless transmitter. Therefore, the basic operating principle and model of the frequency synthesizer are introduced. We also show design examples and measurement results of a low-power low-voltage integer-N frequency synthesizer for biomedical applications. The detection of biomedical signals needs to be converted into digital signals by an analog-to-digital converter to facilitate subsequent signal processing and recognition. Therefore, the operating principle of the analog-to-digital converter is introduced. We also show implementation examples and measurement results of low-power low-voltage analog-to-digital converters for biomedical applications.