Basic Bundle Theory and K-Cohomology Invariants

Basic Bundle Theory and K-Cohomology Invariants
Author: Dale Husemöller
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2007-12-18
Genre: Mathematics
ISBN: 3540749551

Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Basic Bundle Theory and K-Cohomology Invariants

Basic Bundle Theory and K-Cohomology Invariants
Author: Dale Husemöller
Publisher: Springer
Total Pages: 340
Release: 2009-09-02
Genre: Mathematics
ISBN: 9783540843863

Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Basic Bundle Theory and K-Cohomology Invariants

Basic Bundle Theory and K-Cohomology Invariants
Author: Dale Husemöller
Publisher: Springer
Total Pages: 344
Release: 2007-12-10
Genre: Mathematics
ISBN: 354074956X

Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Equivariant Poincaré Duality on G-Manifolds

Equivariant Poincaré Duality on G-Manifolds
Author: Alberto Arabia
Publisher: Springer Nature
Total Pages: 383
Release: 2021-06-12
Genre: Mathematics
ISBN: 3030704408

This book carefully presents a unified treatment of equivariant Poincaré duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.

Local Mathematics For Local Physics: From Number Scaling To Guage Theory And Cosmology

Local Mathematics For Local Physics: From Number Scaling To Guage Theory And Cosmology
Author: Paul Benioff
Publisher: World Scientific
Total Pages: 296
Release: 2024-01-19
Genre: Mathematics
ISBN: 1800614985

The language of the universe is mathematics, but how exactly do you know that all parts of the universe 'speak' the same language? Benioff builds on the idea that the entity that gives substance to both mathematics and physics is the fundamental field, called the 'value field'. While exploring this idea, he notices the similarities that the value field shares with several mysterious phenomena in modern physics: the Higgs field, and dark energy.The author first introduces the concept of the value field and uses it to reformulate the basic framework of number theory, calculus, and vector spaces and bundles. The book moves on to find applications to classical field theory, quantum mechanics and gauge theory. The last two chapters address the relationship between theory and experiment, and the possible physical consequences of both the existence and non-existence of the value field. The book is open-ended, and the list of open questions is certainly longer than the set of proposed answers.Paul Benioff, a pioneer in the field of quantum computing and the author of the first quantum-mechanical description of the Turing machine, devoted the last few years of his life to developing a universal description in which mathematics and physics would be on equal footing. He died on March 29, 2022, his work nearly finished. The final editing was undertaken by Marek Czachor who, in the editorial afterword, attempts to place the author's work in the context of a shift in the scientific paradigm looming on the horizon.

Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications

Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications
Author: Bayram Sahin
Publisher: Academic Press
Total Pages: 362
Release: 2017-01-23
Genre: Mathematics
ISBN: 0128044101

Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore's classic 2004 book. In this new book, Bayram Sahin extends the scope of complex cases with wholly new submersion types, including Anti-invariant submersions, Semi-invariant submersions, slant submersions, and Pointwise slant submersions, also extending their use in Riemannian maps. The work obtains new properties of the domain and target manifolds and investigates the harmonicity and geodesicity conditions for such maps. It also relates these maps with discoveries in pseudo-harmonic maps. Results included in this volume should stimulate future research on Riemannian submersions and Riemannian maps. - Systematically reviews and references modern literature in Riemannian maps - Provides rigorous mathematical theory with applications - Presented in an accessible reading style with motivating examples that help the reader rapidly progress

L2-Invariants: Theory and Applications to Geometry and K-Theory

L2-Invariants: Theory and Applications to Geometry and K-Theory
Author: Wolfgang Lück
Publisher: Springer Science & Business Media
Total Pages: 624
Release: 2002-08-06
Genre: Mathematics
ISBN: 9783540435662

In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.

K-theory

K-theory
Author: Michael Atiyah
Publisher: CRC Press
Total Pages: 181
Release: 2018-03-05
Genre: Mathematics
ISBN: 0429973179

These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.

Differential Geometry

Differential Geometry
Author: Clifford Henry Taubes
Publisher: OUP Oxford
Total Pages: 304
Release: 2011-10-14
Genre: Mathematics
ISBN: 0191621781

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kähler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.