Big Data Analytics Made Easy

Big Data Analytics Made Easy
Author: Y. Lakshmi Prasad
Publisher: Notion Press
Total Pages: 316
Release: 2016-12-14
Genre: Computers
ISBN: 1946390720

Big Data Analytics Made Easy is a must-read for everybody as it explains the power of Analytics in a simple and logical way along with an end to end code in R. Even if you are a novice in Big Data Analytics, you will still be able to understand the concepts explained in this book. If you are already working in Analytics and dealing with Big Data, you will still find this book useful, as it covers exhaustive Data Mining Techniques, which are considered to be Advanced topics. It covers Machine Learning concepts and provides in-depth knowledge on unsupervised as well as supervised Learning, which is very important for decision-making. The toughest Data Analytics concepts are made simpler, It features examples from all the domains so that the reader gets connected to the book easily. This book is like a personal trainer that will help you master the Art of Data Science.

Data Analytics Made Easy

Data Analytics Made Easy
Author: Andrea De Mauro
Publisher: Packt Publishing Ltd
Total Pages: 407
Release: 2021-08-30
Genre: Business & Economics
ISBN: 1801074585

Learn how to gain insights from your data as well as machine learning and become a presentation pro who can create interactive dashboards Key FeaturesEnhance your presentation skills by implementing engaging data storytelling and visualization techniquesLearn the basics of machine learning and easily apply machine learning models to your dataImprove productivity by automating your data processesBook Description Data Analytics Made Easy is an accessible beginner's guide for anyone working with data. The book interweaves four key elements: Data visualizations and storytelling – Tired of people not listening to you and ignoring your results? Don't worry; chapters 7 and 8 show you how to enhance your presentations and engage with your managers and co-workers. Learn to create focused content with a well-structured story behind it to captivate your audience. Automating your data workflows – Improve your productivity by automating your data analysis. This book introduces you to the open-source platform, KNIME Analytics Platform. You'll see how to use this no-code and free-to-use software to create a KNIME workflow of your data processes just by clicking and dragging components. Machine learning – Data Analytics Made Easy describes popular machine learning approaches in a simplified and visual way before implementing these machine learning models using KNIME. You'll not only be able to understand data scientists' machine learning models; you'll be able to challenge them and build your own. Creating interactive dashboards – Follow the book's simple methodology to create professional-looking dashboards using Microsoft Power BI, giving users the capability to slice and dice data and drill down into the results. What you will learnUnderstand the potential of data and its impact on your businessImport, clean, transform, combine data feeds, and automate your processesInfluence business decisions by learning to create engaging presentationsBuild real-world models to improve profitability, create customer segmentation, automate and improve data reporting, and moreCreate professional-looking and business-centric visuals and dashboardsOpen the lid on the black box of AI and learn about and implement supervised and unsupervised machine learning modelsWho this book is for This book is for beginners who work with data and those who need to know how to interpret their business/customer data. The book also covers the high-level concepts of data workflows, machine learning, data storytelling, and visualizations, which are useful for managers. No previous math, statistics, or computer science knowledge is required.

Data Analytics Made Easy

Data Analytics Made Easy
Author: Andrea de Mauro
Publisher:
Total Pages: 406
Release: 2021-08-30
Genre:
ISBN: 9781801074155

Make informed decisions using data analytics, machine learning, and data visualizations Key Features: Take raw data and transform it to add value to your organization Learn the art of telling stories with your data to engage with your audience Apply machine learning algorithms to your data with a few clicks of a button Book Description: Data analytics has become a necessity in modern business, and skills such as data visualization, machine learning, and digital storytelling are now essential in every field. If you want to make sense of your data and add value with informed decisions, this is the book for you. Data Analytics Made Easy is an accessible guide to help you start analyzing data and quickly apply these skills to your work. It focuses on how to generate insights from your data at the click of a few buttons, using the popular tools KNIME and Microsoft Power BI. The book introduces the concepts of data analytics and shows you how to get your data ready and apply ML algorithms. Implement a full predictive analytics solution with KNIME and assess its level of accuracy. Create impressive visualizations with Microsoft Power BI and learn the greatest secret in successful analytics - how to tell a story with your data. You'll connect the dots on the various stages of the data-to-insights process and gain an overview of alternative tools, including Tableau and H20 Driverless AI. By the end of this book, you will have learned how to implement machine learning algorithms and sell the results to your customers without writing a line of code. What You Will Learn: Understand the potential of data and its impact on any business Influence business decisions with effective data storytelling when delivering insights Use KNIME to import, clean, transform, combine data feeds, and automate recurring workflows Learn the basics of machine learning and AutoML to add value to your organization Build, test, and validate simple supervised and unsupervised machine learning models with KNIME Use Power BI and Tableau to build professional-looking and business-centric visuals and dashboards Who this book is for: Whether you are working with data experts or want to find insights in your business' data, you'll find this book an effective way to add analytics to your skill stack. No previous math, statistics, or computer science knowledge is required.

Storage Area Networks For Dummies

Storage Area Networks For Dummies
Author: Christopher Poelker
Publisher: John Wiley & Sons
Total Pages: 467
Release: 2009-01-09
Genre: Computers
ISBN: 0470385138

If you’ve been charged with setting up storage area networks for your company, learning how SANs work and managing data storage problems might seem challenging. Storage Area Networks For Dummies, 2nd Edition comes to the rescue with just what you need to know. Whether you already a bit SAN savvy or you’re a complete novice, here’s the scoop on how SANs save money, how to implement new technologies like data de-duplication, iScsi, and Fibre Channel over Ethernet, how to develop SANs that will aid your company’s disaster recovery plan, and much more. For example, you can: Understand what SANs are, whether you need one, and what you need to build one Learn to use loops, switches, and fabric, and design your SAN for peak performance Create a disaster recovery plan with the appropriate guidelines, remote site, and data copy techniques Discover how to connect or extend SANs and how compression can reduce costs Compare tape and disk backups and network vs. SAN backup to choose the solution you need Find out how data de-duplication makes sense for backup, replication, and retention Follow great troubleshooting tips to help you find and fix a problem Benefit from a glossary of all those pesky acronyms From the basics for beginners to advanced features like snapshot copies, storage virtualization, and heading off problems before they happen, here’s what you need to do the job with confidence!

Java: Data Science Made Easy

Java: Data Science Made Easy
Author: Richard M. Reese
Publisher: Packt Publishing Ltd
Total Pages: 715
Release: 2017-07-07
Genre: Computers
ISBN: 1788479181

Data collection, processing, analysis, and more About This Book Your entry ticket to the world of data science with the stability and power of Java Explore, analyse, and visualize your data effectively using easy-to-follow examples A highly practical course covering a broad set of topics - from the basics of Machine Learning to Deep Learning and Big Data frameworks. Who This Book Is For This course is meant for Java developers who are comfortable developing applications in Java, and now want to enter the world of data science or wish to build intelligent applications. Aspiring data scientists with some understanding of the Java programming language will also find this book to be very helpful. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing your existing Java stack, this book is for you! What You Will Learn Understand the key concepts of data science Explore the data science ecosystem available in Java Work with the Java APIs and techniques used to perform efficient data analysis Find out how to approach different machine learning problems with Java Process unstructured information such as natural language text or images, and create your own search Learn how to build deep neural networks with DeepLearning4j Build data science applications that scale and process large amounts of data Deploy data science models to production and evaluate their performance In Detail Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this course, we cover the basic as well as advanced data science concepts and how they are implemented using the popular Java tools and libraries.The course starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. You will examine the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. Throughout this course, the chapters will illustrate a challenging data science problem, and then go on to present a comprehensive, Java-based solution to tackle that problem. You will cover a wide range of topics – from classification and regression, to dimensionality reduction and clustering, deep learning and working with Big Data. Finally, you will see the different ways to deploy the model and evaluate it in production settings. By the end of this course, you will be up and running with various facets of data science using Java, in no time at all. This course contains premium content from two of our recently published popular titles: Java for Data Science Mastering Java for Data Science Style and approach This course follows a tutorial approach, providing examples of each of the concepts covered. With a step-by-step instructional style, this book covers various facets of data science and will get you up and running quickly.

Big Data at Work

Big Data at Work
Author: Thomas Davenport
Publisher: Harvard Business Review Press
Total Pages: 241
Release: 2014-02-04
Genre: Business & Economics
ISBN: 1422168174

Go ahead, be skeptical about big data. The author was—at first. When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind. Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold. This book will help you understand: • Why big data is important to you and your organization • What technology you need to manage it • How big data could change your job, your company, and your industry • How to hire, rent, or develop the kinds of people who make big data work • The key success factors in implementing any big data project • How big data is leading to a new approach to managing analytics With dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.

Creating Value with Big Data Analytics

Creating Value with Big Data Analytics
Author: Peter C. Verhoef
Publisher: Routledge
Total Pages: 339
Release: 2016-01-08
Genre: Business & Economics
ISBN: 1317561929

Our newly digital world is generating an almost unimaginable amount of data about all of us. Such a vast amount of data is useless without plans and strategies that are designed to cope with its size and complexity, and which enable organisations to leverage the information to create value. This book is a refreshingly practical, yet theoretically sound roadmap to leveraging big data and analytics. Creating Value with Big Data Analytics provides a nuanced view of big data development, arguing that big data in itself is not a revolution but an evolution of the increasing availability of data that has been observed in recent times. Building on the authors’ extensive academic and practical knowledge, this book aims to provide managers and analysts with strategic directions and practical analytical solutions on how to create value from existing and new big data. By tying data and analytics to specific goals and processes for implementation, this is a much-needed book that will be essential reading for students and specialists of data analytics, marketing research, and customer relationship management.

Big Data Analytics with Spark

Big Data Analytics with Spark
Author: Mohammed Guller
Publisher: Apress
Total Pages: 290
Release: 2015-12-29
Genre: Computers
ISBN: 1484209648

Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Data Analytics and Big Data

Data Analytics and Big Data
Author: Soraya Sedkaoui
Publisher: John Wiley & Sons
Total Pages: 149
Release: 2018-05-24
Genre: Computers
ISBN: 1119528054

The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.