Brain Informatics

Brain Informatics
Author: Mufti Mahmud
Publisher: Springer Nature
Total Pages: 384
Release: 2020-09-18
Genre: Computers
ISBN: 3030592774

This book constitutes the refereed proceedings of the 13th International Conference on Brain Informatics, BI 2020, held in Padua, Italy, in September 2020. The conference was held virtually due to the COVID-19 pandemic. The 33 full papers were carefully reviewed and selected from 57 submissions. The papers are organized in the following topical sections: cognitive and computational foundations of brain science; investigations of human information processing systems; brain big data analytics, curation and management; informatics paradigms for brain and mental health research; and brain-machine intelligence and brain-inspired computing.

Brain Informatics and Health

Brain Informatics and Health
Author: Yike Guo
Publisher: Springer
Total Pages: 464
Release: 2015-08-20
Genre: Computers
ISBN: 3319233440

This book constitutes the proceedings of the International Conference on Brain Informatics and Health, BIH 2015, held in London, UK, in August/September 2015. The 42 full papers presented were carefully reviewed and selected from 82 submissions. Following the success of past conferences in this series, BIH 2015 has a strong emphasis on emerging trends of big data analysis and management technology for brain research, behavior learning, and real-world applications of brain science in human health and wellbeing.

Brain Informatics and Health

Brain Informatics and Health
Author: Giorgio A. Ascoli
Publisher: Springer
Total Pages: 392
Release: 2016-09-22
Genre: Computers
ISBN: 3319471031

This book constitutes the refereed proceedings of the International Conference on Brain and Health Informatics, BHI 2016, held in Omaha, USA, in October 2016. The 37 revised full papers, including two workshop papers from BAI 2016, presented were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on cognitive and computational foundations of brain science; investigations of human information processing systems; brain big data analytics, curation and management; new methodologies for brain and mental health; brain-inspired intelligence and computing; brain and artificial intelligence.

Brain Informatics

Brain Informatics
Author: Mufti Mahmud
Publisher: Springer
Total Pages: 570
Release: 2021-09-16
Genre: Computers
ISBN: 9783030869922

This book constitutes the refereed proceedings of the 14th International Conference on Brain Informatics, BI 2021, held in September 2021. The conference was held virtually due to the COVID-19 pandemic. The 49 full and 2 short papers together with 18 abstract papers were carefully reviewed and selected from 90 submissions. The papers are organized in the following topical sections: cognitive and computational foundations of brain science; investigations of human information processing systems; brain big data analytics, curation and management; informatics paradigms for brain and mental health research; and brain-machine intelligence and brain-inspired computing.

Brain Informatics

Brain Informatics
Author: Shouyi Wang
Publisher: Springer
Total Pages: 509
Release: 2018-12-06
Genre: Computers
ISBN: 3030055876

This book constitutes the refereed proceedings of the International Conference on Brain Informatics, BI 2018, held in Arlington, TX, USA, in December 2018. The 46 revised full papers were carefully reviewed and selected from 53 submissions. The papers are grouped thematically on cognitive and computational foundations of brain science, human information processing systems, brain big data analysis, curation and management, informatics paradigms for brain and mental health research, brain-machine intelligence and brain-inspired computing.

Machine Learning for Health Informatics

Machine Learning for Health Informatics
Author: Andreas Holzinger
Publisher: Springer
Total Pages: 503
Release: 2016-12-09
Genre: Computers
ISBN: 3319504789

Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.

Brain Informatics and Health

Brain Informatics and Health
Author: Dominik Slezak
Publisher: Springer
Total Pages: 615
Release: 2014-07-14
Genre: Computers
ISBN: 3319098918

This book constitutes the proceedings of the International Conference on Brain Informatics and Health, BIH 2014, held in Warsaw, Poland, in August 2014, as part of 2014 Web Intelligence Congress, WIC 2014. The 29 full papers presented together with 23 special session papers were carefully reviewed and selected from 101 submissions. The papers are organized in topical sections on brain understanding; cognitive modelling; brain data analytics; health data analytics; brain informatics and data management; semantic aspects of biomedical analytics; healthcare technologies and systems; analysis of complex medical data; understanding of information processing in brain; neuroimaging data processing strategies; advanced methods of interactive data mining for personalized medicine.

Deep Learning Techniques for Biomedical and Health Informatics

Deep Learning Techniques for Biomedical and Health Informatics
Author: Basant Agarwal
Publisher: Academic Press
Total Pages: 370
Release: 2020-01-14
Genre: Science
ISBN: 0128190620

Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. - Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring - Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making - Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis

Machine Learning in Healthcare Informatics

Machine Learning in Healthcare Informatics
Author: Sumeet Dua
Publisher: Springer Science & Business Media
Total Pages: 334
Release: 2013-12-09
Genre: Technology & Engineering
ISBN: 3642400175

The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.