Cohomology of Number Fields

Cohomology of Number Fields
Author: Jürgen Neukirch
Publisher: Springer Science & Business Media
Total Pages: 831
Release: 2013-09-26
Genre: Mathematics
ISBN: 3540378898

This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.

Galois Cohomology and Class Field Theory

Galois Cohomology and Class Field Theory
Author: David Harari
Publisher: Springer Nature
Total Pages: 336
Release: 2020-06-24
Genre: Mathematics
ISBN: 3030439011

This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.

A Gentle Course in Local Class Field Theory

A Gentle Course in Local Class Field Theory
Author: Pierre Guillot
Publisher: Cambridge University Press
Total Pages: 309
Release: 2018-11
Genre: Mathematics
ISBN: 1108421776

A self-contained exposition of local class field theory for students in advanced algebra.

Local Fields

Local Fields
Author: Jean-Pierre Serre
Publisher: Springer Science & Business Media
Total Pages: 249
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475756739

The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.

Arithmetic Duality Theorems

Arithmetic Duality Theorems
Author: J. S. Milne
Publisher:
Total Pages: 440
Release: 1986
Genre: Mathematics
ISBN:

Here, published for the first time, are the complete proofs of the fundamental arithmetic duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry. The text covers these theorems in Galois cohomology, ,tale cohomology, and flat cohomology and addresses applications in the above areas. The writing is expository and the book will serve as an invaluable reference text as well as an excellent introduction to the subject.

Galois Theory of p-Extensions

Galois Theory of p-Extensions
Author: Helmut Koch
Publisher: Springer Science & Business Media
Total Pages: 196
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662049678

Helmut Koch's classic is now available in English. Competently translated by Franz Lemmermeyer, it introduces the theory of pro-p groups and their cohomology. The book contains a postscript on the recent development of the field written by H. Koch and F. Lemmermeyer, along with many additional recent references.

Galois Cohomology

Galois Cohomology
Author: Jean-Pierre Serre
Publisher: Springer Science & Business Media
Total Pages: 215
Release: 2013-12-01
Genre: Mathematics
ISBN: 3642591418

This is an updated English translation of Cohomologie Galoisienne, published more than thirty years ago as one of the very first versions of Lecture Notes in Mathematics. It includes a reproduction of an influential paper by R. Steinberg, together with some new material and an expanded bibliography.

Galois Groups over ?

Galois Groups over ?
Author: Y. Ihara
Publisher: Springer Science & Business Media
Total Pages: 454
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461396492

This volume is the offspring of a week-long workshop on "Galois groups over Q and related topics," which was held at the Mathematical Sciences Research Institute during the week March 23-27, 1987. The organizing committee consisted of Kenneth Ribet (chairman), Yasutaka Ihara, and Jean-Pierre Serre. The conference focused on three principal themes: 1. Extensions of Q with finite simple Galois groups. 2. Galois actions on fundamental groups, nilpotent extensions of Q arising from Fermat curves, and the interplay between Gauss sums and cyclotomic units. 3. Representations of Gal(Q/Q) with values in GL(2)j deformations and connections with modular forms. Here is a summary of the conference program: • G. Anderson: "Gauss sums, circular units and the simplex" • G. Anderson and Y. Ihara: "Galois actions on 11"1 ( ••• ) and higher circular units" • D. Blasius: "Maass forms and Galois representations" • P. Deligne: "Galois action on 1I"1(P-{0, 1, oo}) and Hodge analogue" • W. Feit: "Some Galois groups over number fields" • Y. Ihara: "Arithmetic aspect of Galois actions on 1I"1(P - {O, 1, oo})" - survey talk • U. Jannsen: "Galois cohomology of i-adic representations" • B. Matzat: - "Rationality criteria for Galois extensions" - "How to construct polynomials with Galois group Mll over Q" • B. Mazur: "Deforming GL(2) Galois representations" • K. Ribet: "Lowering the level of modular representations of Gal( Q/ Q)" • J-P. Serre: - Introductory Lecture - "Degree 2 modular representations of Gal(Q/Q)" • J.

Foundations of Stable Homotopy Theory

Foundations of Stable Homotopy Theory
Author: David Barnes
Publisher: Cambridge University Press
Total Pages: 432
Release: 2020-03-26
Genre: Mathematics
ISBN: 1108672671

The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject.