Computational Electromagnetics with MATLAB, Fourth Edition

Computational Electromagnetics with MATLAB, Fourth Edition
Author: Matthew N.O. Sadiku
Publisher: CRC Press
Total Pages: 687
Release: 2018-07-20
Genre: Technology & Engineering
ISBN: 1351365096

This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.

Numerical Techniques in Electromagnetics, Second Edition

Numerical Techniques in Electromagnetics, Second Edition
Author: Matthew N.O. Sadiku
Publisher: CRC Press
Total Pages: 764
Release: 2000-07-12
Genre: Technology & Engineering
ISBN: 9780849313950

As the availability of powerful computer resources has grown over the last three decades, the art of computation of electromagnetic (EM) problems has also grown - exponentially. Despite this dramatic growth, however, the EM community lacked a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. The Second Edition of this bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite difference time domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also added a chapter on the method of lines. Numerical Techniques in Electromagnetics continues to teach readers how to pose, numerically analyze, and solve EM problems, give them the ability to expand their problem-solving skills using a variety of methods, and prepare them for research in electromagnetism. Now the Second Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems.

Computational Electromagnetics

Computational Electromagnetics
Author: Anders Bondeson
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2005-08-15
Genre: Mathematics
ISBN: 0387261583

Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included

Numerical Electromagnetics

Numerical Electromagnetics
Author: Umran S. Inan
Publisher: Cambridge University Press
Total Pages: 405
Release: 2011-04-07
Genre: Science
ISBN: 1139497987

Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.

Wideband Microwave Materials Characterization

Wideband Microwave Materials Characterization
Author: John W. Schultz
Publisher: Artech House
Total Pages: 331
Release: 2023-02-28
Genre: Technology & Engineering
ISBN: 1630819476

This book is a practical engineering guide to microwave material measurements for both laboratory and manufacturing/field environments, including nondestructive inspection (NDI) and nondestructive evaluation (NDE). The book covers proven methods for characterizing materials at microwave frequencies, including both resonant and wide-bandwidth techniques, and gives you the necessary theory and equations for implementing these methods. You’ll understand how to invert dielectric and/or magnetic material properties from free space transmission and reflection, and how to measure traveling wave attenuation. You’ll also know how to measure dielectric and/or magnetic material properties from transmission line fixtures, and learn how to use computational electromagnetic modeling with a measurement fixture. The book shows you how to build and use microwave NDE equipment for radomes and/or structural dielectric materials. This is an excellent resource for Engineers/scientists conducting or analyzing RF/Microwave/MMW material measurements for applications in electromagnetic materials, as well as those who are developing or applying microwave non-destructive evaluation (NDE) methods to their manufacturing problems.

Programming for Computations - MATLAB/Octave

Programming for Computations - MATLAB/Octave
Author: Svein Linge
Publisher: Springer
Total Pages: 228
Release: 2016-08-01
Genre: Computers
ISBN: 3319324527

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Introduction to Numerical Electrostatics Using MATLAB

Introduction to Numerical Electrostatics Using MATLAB
Author: Lawrence N. Dworsky
Publisher: John Wiley & Sons
Total Pages: 452
Release: 2014-04-07
Genre: Science
ISBN: 1118449746

Readers are guided step by step through numerous specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. The author focuses on practical examples, derives mathematical equations, and addresses common issues with algorithms. Introduction to Numerical Electrostatics contains problem sets, an accompanying web site with simulations, and a complete list of computer codes. Computer source code listings on accompanying web site Problem sets included with book Readers using MATLAB or other simulation packages will gain insight as to the inner workings of these packages, and how to account for their limitations Example computer code is provided in MATLAB Solutions Manual The first book of its kind uniquely devoted to the field of computational electrostatics