Control Strategies and Co-Design of Networked Control Systems

Control Strategies and Co-Design of Networked Control Systems
Author: Héctor Benítez-Pérez
Publisher: Springer
Total Pages: 193
Release: 2018-07-31
Genre: Technology & Engineering
ISBN: 3319970445

This book presents Networked Control System (NCS) as a particular kind of a real-time distributed system (RTDS), composed of a set of nodes, interconnected by a network, and able to develop a complete control process. It describes important parts of the control process such as sensor and actuator activities, which rely on a real-time operating system, and a real-time communication network. As the use of common bus network architecture introduces different forms of uncertainties between sensors, actuators, and controllers, several approaches such as reconfigurable systems have been developed to tackle this problem. Moreover, modeling NCS is a challenging procedure, since there are several non-linear situations, like local saturations, uncertain time delays, dead-zones, or local situations, it is necessary to deal with. The book describes a novel strategy for modelling and control based on a fuzzy control approach and codesign strategies.

Optimal and Robust Scheduling for Networked Control Systems

Optimal and Robust Scheduling for Networked Control Systems
Author: Stefano Longo
Publisher: CRC Press
Total Pages: 280
Release: 2013-03-26
Genre: Technology & Engineering
ISBN: 1466569549

Optimal and Robust Scheduling for Networked Control Systems tackles the problem of integrating system components—controllers, sensors, and actuators—in a networked control system. It is common practice in industry to solve such problems heuristically, because the few theoretical results available are not comprehensive and cannot be readily applied by practitioners. This book offers a solution to the deterministic scheduling problem that is based on rigorous control theoretical tools but also addresses practical implementation issues. Helping to bridge the gap between control theory and computer science, it suggests that the consideration of communication constraints at the design stage will significantly improve the performance of the control system. Technical Results, Design Techniques, and Practical Applications The book brings together well-known measures for robust performance as well as fast stochastic algorithms to assist designers in selecting the best network configuration and guaranteeing the speed of offline optimization. The authors propose a unifying framework for modelling NCSs with time-triggered communication and present technical results. They also introduce design techniques, including for the codesign of a controller and communication sequence and for the robust design of a communication sequence for a given controller. Case studies explore the use of the FlexRay TDMA and time-triggered control area network (CAN) protocols in an automotive control system. Practical Solutions to Your Time-Triggered Communication Problems This unique book develops ready-to-use engineering tools for large-scale control system integration with a focus on robustness and performance. It emphasizes techniques that are directly applicable to time-triggered communication problems in the automotive industry and in avionics, robotics, and automated manufacturing.

Investigation on Robust Codesign Methods for Networked Control Systems

Investigation on Robust Codesign Methods for Networked Control Systems
Author: Sanad Al-Areqi
Publisher: Logos Verlag Berlin GmbH
Total Pages: 184
Release: 2015-12-31
Genre: Mathematics
ISBN: 3832541705

The problem of jointly designing a robust controller and an intelligent scheduler for networked control systems (NCSs) is addressed in this thesis. NCSs composing of multiple plants that share a single channel communication network with uncertain time-varying transmission times are modeled as switched polytopic systems with additive norm-bounded uncertainty. Switching is deployed to represent scheduling, the polytopic uncertainty to overapproximatively describe the uncertain time-varying transmission times. Based on the resulting NCS model and a state feedback control law, the control and scheduling codesign problem is then introduced and formulated as a robust (minimax) optimization problem with the objective of minimizing the worst-case value of an associated infinite time-horizon quadratic cost function. Five robust codesign strategies are investigated for tackling the introduced optimization problem, namely: Periodic control and scheduling (PCS), Receding-horizon control and scheduling (RHCS), Implementation-aware control and scheduling (IACS), Event-based control and scheduling (EBCS), Prediction-based control and scheduling (PBCS). All these codesign strategies are determined from LMI optimization problems based on the Lyapunov theory. The properties of each are evaluated and compared in terms of computational complexity and control performance based on simulation and experimental study, showing their effectiveness in improving the performance while utilizing the limited communication resources very efficiently.

Analysis and Design of Networked Control Systems under Attacks

Analysis and Design of Networked Control Systems under Attacks
Author: Yuan Yuan
Publisher: CRC Press
Total Pages: 219
Release: 2018-09-21
Genre: Computers
ISBN: 0429812272

This book adopts a systematic view of the control systems in cyber-physical systems including the security control of the optimal control system, security control of the non-cooperative game system, quantify the impact of the Denial-of-Service attacks on the optimal control system, and the adaptive security control of the networked control systems. Because the cyber-physical system is a hybrid system, it adopts cross layer approach to handle the security control of the CPS. It presents a number of attack models according to the attack scenario and defense facilities, and a number of cross-layer co-design methodologies to secure the control of CPS.

Co-design Approaches to Dependable Networked Control Systems

Co-design Approaches to Dependable Networked Control Systems
Author: Daniel Simon
Publisher: John Wiley & Sons
Total Pages: 261
Release: 2013-03-04
Genre: Science
ISBN: 1118620666

Networked Control Systems (NCS) is a growing field of application and calls for the development of integrated approaches requiring multidisciplinary skills in control, real-time computing and communication protocols. This book describes co-design approaches, and establishes the links between the QoC (Quality of Control) and QoS (Quality of Service) of the network and computing resources. The methods and tools described in this book take into account, at design level, various parameters and properties that must be satisfied by systems controlled through a network. Among the important network properties examined are the QoC, the dependability of the system, and the feasibility of the real-time scheduling of tasks and messages. Correct exploitation of these approaches allows for efficient design, diagnosis, and implementation of the NCS. This book will be of great interest to researchers and advanced students in automatic control, real-time computing, and networking domains, and to engineers tasked with development of NCS, as well as those working in related network design and engineering fields.

Networked Control Systems

Networked Control Systems
Author: Fei-Yue Wang
Publisher: Springer Science & Business Media
Total Pages: 352
Release: 2008-06-17
Genre: Computers
ISBN: 1848002157

Networked control systems (NCS) confer advantages of cost reduction, system diagnosis and flexibility, minimizing wiring and simplifying the addition and replacement of individual elements; efficient data sharing makes taking globally intelligent control decisions easier with NCS. The applications of NCS range from the large scale of factory automation and plant monitoring to the smaller networks of computers in modern cars, places and autonomous robots. Networked Control Systems presents recent results in stability and robustness analysis and new developments related to networked fuzzy and optimal control. Many chapters contain case-studies, experimental, simulation or other application-related work showing how the theories put forward can be implemented. The state-of-the art research reported in this volume by an international team of contributors makes it an essential reference for researchers and postgraduate students in control, electrical, computer and mechanical engineering and computer science.

Packet-Based Control for Networked Control Systems

Packet-Based Control for Networked Control Systems
Author: Yun-Bo Zhao
Publisher: Springer
Total Pages: 186
Release: 2017-09-14
Genre: Technology & Engineering
ISBN: 9811062501

This book introduces a unique, packet-based co-design control framework for networked control systems. It begins by providing a comprehensive survey of state-of-the-art research on networked control systems, giving readers a general overview of the field. It then verifies the proposed control framework both theoretically and experimentally – the former using multiple control methodologies, and the latter using a unique online test rig for networked control systems. The framework investigates in detail the most common, communication constraints, including network-induced delays, data packet dropout, data packet disorders, and network access constraints, as well as multiple controller design and system analysis tools such as model predictive control, linear matrix inequalities and optimal control. This unique and complete co-design framework greatly benefits researchers, graduate students and engineers in the fields of control theory and engineering.

Hybrid PID Based Predictive Control Strategies for WirelessHART Networked Control Systems

Hybrid PID Based Predictive Control Strategies for WirelessHART Networked Control Systems
Author: Sabo Miya Hassan
Publisher: Springer Nature
Total Pages: 165
Release: 2020-05-12
Genre: Technology & Engineering
ISBN: 3030477371

Recent advances in wireless technology have led to the emergence of industry standards such as WirelessHART. These strategies minimise the need for cumbersome cabling, thereby reducing costs. However, applying them involves the challenge of handling stochastic network delays, which can degrade control performance. To address this problem, commonly used simple PID could be employed. However, PID suffers from gain range limitations when used in a delayed environment. Furthermore, model-based controllers are complex and require exact models of the process and systematic system identification for implementation. Therefore, to address these issues, the book proposes control strategies that retain the simplicity of PID in terms of ease of tuning and structure, while improving on the performance of the closed-loop system with regard to stochastic network delays and mismatches. Concretely, it proposes and discusses three strategies, namely: Setpoint Weighting (SW), Filtered Predictive PI (FPPI) and Optimal Fuzzy PID. In order to optimise some of these controllers, two novel hybrid optimisation algorithms combining the dynamism of the Bacterial Foraging Algorithm (BFA) and advantages of both the Spiral Dynamic Algorithm (SDA) and the Accelerated Particle Swarm Optimisation (APSO) have been used. The strategies proposed here can also be applied in stochastic control scenarios (not necessarily wireless) characterised by uncertainties. This book will be useful to engineers and researchers in both industry and academia. In industry, it will be particularly useful to research and development efforts where PID controllers and wireless sensor networks (WSNs) involving both short and long term stochastic network delay are employed. Thus, it can be used for real-time control design in these areas. In the academic setting, the book will be useful for researchers, undergraduate and graduate students of instrumentation and control. It can also be used as reference material for teaching courses on predictive and adaptive controls and their application.