Data Science and Big Data Analytics in Smart Environments

Data Science and Big Data Analytics in Smart Environments
Author: Marta Chinnici
Publisher: CRC Press
Total Pages: 305
Release: 2021-07-28
Genre: Computers
ISBN: 1000386015

Most applications generate large datasets, like social networking and social influence programs, smart cities applications, smart house environments, Cloud applications, public web sites, scientific experiments and simulations, data warehouse, monitoring platforms, and e-government services. Data grows rapidly, since applications produce continuously increasing volumes of both unstructured and structured data. Large-scale interconnected systems aim to aggregate and efficiently exploit the power of widely distributed resources. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance and to create a smart environment. The impact on data processing, transfer and storage is the need to re-evaluate the approaches and solutions to better answer the user needs. A variety of solutions for specific applications and platforms exist so a thorough and systematic analysis of existing solutions for data science, data analytics, methods and algorithms used in Big Data processing and storage environments is significant in designing and implementing a smart environment. Fundamental issues pertaining to smart environments (smart cities, ambient assisted leaving, smart houses, green houses, cyber physical systems, etc.) are reviewed. Most of the current efforts still do not adequately address the heterogeneity of different distributed systems, the interoperability between them, and the systems resilience. This book will primarily encompass practical approaches that promote research in all aspects of data processing, data analytics, data processing in different type of systems: Cluster Computing, Grid Computing, Peer-to-Peer, Cloud/Edge/Fog Computing, all involving elements of heterogeneity, having a large variety of tools and software to manage them. The main role of resource management techniques in this domain is to create the suitable frameworks for development of applications and deployment in smart environments, with respect to high performance. The book focuses on topics covering algorithms, architectures, management models, high performance computing techniques and large-scale distributed systems.

Data Science and Big Data Analytics in Smart Environments

Data Science and Big Data Analytics in Smart Environments
Author: Marta Chinnici
Publisher: CRC Press
Total Pages: 304
Release: 2021-07-27
Genre: Computers
ISBN: 1000386058

Most applications generate large datasets, like social networking and social influence programs, smart cities applications, smart house environments, Cloud applications, public web sites, scientific experiments and simulations, data warehouse, monitoring platforms, and e-government services. Data grows rapidly, since applications produce continuously increasing volumes of both unstructured and structured data. Large-scale interconnected systems aim to aggregate and efficiently exploit the power of widely distributed resources. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance and to create a smart environment. The impact on data processing, transfer and storage is the need to re-evaluate the approaches and solutions to better answer the user needs. A variety of solutions for specific applications and platforms exist so a thorough and systematic analysis of existing solutions for data science, data analytics, methods and algorithms used in Big Data processing and storage environments is significant in designing and implementing a smart environment. Fundamental issues pertaining to smart environments (smart cities, ambient assisted leaving, smart houses, green houses, cyber physical systems, etc.) are reviewed. Most of the current efforts still do not adequately address the heterogeneity of different distributed systems, the interoperability between them, and the systems resilience. This book will primarily encompass practical approaches that promote research in all aspects of data processing, data analytics, data processing in different type of systems: Cluster Computing, Grid Computing, Peer-to-Peer, Cloud/Edge/Fog Computing, all involving elements of heterogeneity, having a large variety of tools and software to manage them. The main role of resource management techniques in this domain is to create the suitable frameworks for development of applications and deployment in smart environments, with respect to high performance. The book focuses on topics covering algorithms, architectures, management models, high performance computing techniques and large-scale distributed systems.

Machine Learning Approach for Cloud Data Analytics in IoT

Machine Learning Approach for Cloud Data Analytics in IoT
Author: Sachi Nandan Mohanty
Publisher: John Wiley & Sons
Total Pages: 528
Release: 2021-07-14
Genre: Computers
ISBN: 1119785855

Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.

Big Data Analytics for Smart and Connected Cities

Big Data Analytics for Smart and Connected Cities
Author: Nilanjan Dey
Publisher: Engineering Science Reference
Total Pages: 0
Release: 2019
Genre: Computers
ISBN: 9781522562092

To continue providing people with safe, comfortable, and affordable places to live, cities must incorporate techniques and technologies to bring them into the future. The integration of big data and interconnected technology, along with the increasing population, will lead to the necessary creation of smart cities. Big Data Analytics for Smart and Connected Cities is a pivotal reference source that provides vital research on the application of the integration of interconnected technologies and big data analytics into the creation of smart cities. While highlighting topics such as energy conservation, public transit planning, and performance measurement, this publication explores technology integration in urban environments as well as the methods of planning cities to implement these new technologies. This book is ideally designed for engineers, professionals, researchers, and technology developers seeking current research on technology implementation in urban settings.

Big Data Analytics for Internet of Things

Big Data Analytics for Internet of Things
Author: Tausifa Jan Saleem
Publisher: John Wiley & Sons
Total Pages: 402
Release: 2021-04-20
Genre: Mathematics
ISBN: 1119740754

BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.

Big Data Science and Analytics for Smart Sustainable Urbanism

Big Data Science and Analytics for Smart Sustainable Urbanism
Author: Simon Elias Bibri
Publisher:
Total Pages: 337
Release: 2019
Genre: Big data
ISBN: 9783030173135

We are living at the dawn of what has been termed 'the fourth paradigm of science, ' a scientific revolution that is marked by both the emergence of big data science and analytics, and by the increasing adoption of the underlying technologies in scientific and scholarly research practices. Everything about science development or knowledge production is fundamentally changing thanks to the ever-increasing deluge of data. This is the primary fuel of the new age, which powerful computational processes or analytics algorithms are using to generate valuable knowledge for enhanced decision-making, and deep insights pertaining to a wide variety of practical uses and applications. This book addresses the complex interplay of the scientific, technological, and social dimensions of the city, and what it entails in terms of the systemic implications for smart sustainable urbanism. In concrete terms, it explores the interdisciplinary and transdisciplinary field of smart sustainable urbanism and the unprecedented paradigmatic shifts and practical advances it is undergoing in light of big data science and analytics. This new era of science and technology embodies an unprecedentedly transformative and constitutive power-manifested not only in the form of revolutionizing science and transforming knowledge, but also in advancing social practices, producing new discourses, catalyzing major shifts, and fostering societal transitions. Of particular relevance, it is instigating a massive change in the way both smart cities and sustainable cities are studied and understood, and in how they are planned, designed, operated, managed, and governed in the face of urbanization. This relates to what has been dubbed data-driven smart sustainable urbanism, an emerging approach based on a computational understanding of city systems and processes that reduces urban life to logical and algorithmic rules and procedures, while also harnessing urban big data to provide a more holistic and integrated view or synoptic intelligence of the city. This is increasingly being directed towards improving, advancing, and maintaining the contribution of both sustainable cities and smart cities to the goals of sustainable development. This timely and multifaceted book is aimed at a broad readership. As such, it will appeal to urban scientists, data scientists, urbanists, planners, engineers, designers, policymakers, philosophers of science, and futurists, as well as all readers interested in an overview of the pivotal role of big data science and analytics in advancing every academic discipline and social practice concerned with data-intensive science and its application, particularly in relation to sustainability.

Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics

Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics
Author: Taser, Pelin Yildirim
Publisher: IGI Global
Total Pages: 334
Release: 2021-11-05
Genre: Computers
ISBN: 1799841871

The internet of things (IoT) has emerged to address the need for connectivity and seamless integration with other devices as well as big data platforms for analytics. However, there are challenges that IoT-based applications face including design and implementation issues; connectivity problems; data gathering, storing, and analyzing in cloud-based environments; and IoT security and privacy issues. Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics is a critical reference source that provides theoretical frameworks and research findings on IoT and big data integration. Highlighting topics that include wearable sensors, machine learning, machine intelligence, and mobile computing, this book serves professionals who want to improve their understanding of the strategic role of trust at different levels of the information and knowledge society. It is therefore of most value to data scientists, computer scientists, data analysts, IT specialists, academicians, professionals, researchers, and students working in the field of information and knowledge management in various disciplines that include but are not limited to information and communication sciences, administrative sciences and management, education, sociology, computer science, etc. Moreover, the book provides insights and supports executives concerned with the management of expertise, knowledge, information, and organizational development in different types of work communities and environments.

Artificial Intelligence and Big Data Analytics for Smart Healthcare

Artificial Intelligence and Big Data Analytics for Smart Healthcare
Author: Miltiadis Lytras
Publisher: Academic Press
Total Pages: 292
Release: 2021-10-22
Genre: Medical
ISBN: 0128220627

Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers

Data Science and Big Data Analytics

Data Science and Big Data Analytics
Author: EMC Education Services
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2014-12-19
Genre: Computers
ISBN: 1118876229

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!