Author | : Reinhard Klette |
Publisher | : Morgan Kaufmann |
Total Pages | : 676 |
Release | : 2004-08-06 |
Genre | : Computers |
ISBN | : 1558608613 |
The first book on digital geometry by the leaders in the field.
Author | : Reinhard Klette |
Publisher | : Morgan Kaufmann |
Total Pages | : 676 |
Release | : 2004-08-06 |
Genre | : Computers |
ISBN | : 1558608613 |
The first book on digital geometry by the leaders in the field.
Author | : Jayanta Mukhopadhyay |
Publisher | : CRC Press |
Total Pages | : 316 |
Release | : 2016-04-19 |
Genre | : Computers |
ISBN | : 1466505680 |
Exploring theories and applications developed during the last 30 years, Digital Geometry in Image Processing presents a mathematical treatment of the properties of digital metric spaces and their relevance in analyzing shapes in two and three dimensions. Unlike similar books, this one connects the two areas of image processing and digital geometry,
Author | : Li M. Chen |
Publisher | : Springer |
Total Pages | : 325 |
Release | : 2014-12-12 |
Genre | : Computers |
ISBN | : 3319120999 |
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.
Author | : Valentin E. Brimkov |
Publisher | : Springer Science & Business Media |
Total Pages | : 430 |
Release | : 2012-05-20 |
Genre | : Technology & Engineering |
ISBN | : 940074174X |
Digital geometry emerged as an independent discipline in the second half of the last century. It deals with geometric properties of digital objects and is developed with the unambiguous goal to provide rigorous theoretical foundations for devising new advanced approaches and algorithms for various problems of visual computing. Different aspects of digital geometry have been addressed in the literature. This book is the first one that explicitly focuses on the presentation of the most important digital geometry algorithms. Each chapter provides a brief survey on a major research area related to the general volume theme, description and analysis of related fundamental algorithms, as well as new original contributions by the authors. Every chapter contains a section in which interesting open problems are addressed.
Author | : Gilles Bertrand |
Publisher | : Springer |
Total Pages | : 455 |
Release | : 2003-07-31 |
Genre | : Computers |
ISBN | : 3540455760 |
Images or discrete objects, to be analyzed based on digital image data, need to be represented, analyzed, transformed, recovered etc. These problems have stimulated many interesting developments in theoretical foundations of image processing. This coherent anthology presents 27 state-of-the-art surveys and research papers on digital image geometry and topology. It is based on a winter school held at Dagstuhl Castle, Germany in December 2000 and offers topical sections on topology, representation, geometry, multigrid convergence, and shape similarity and simplification.
Author | : Martin J. Turner |
Publisher | : Academic Press |
Total Pages | : 352 |
Release | : 1998-06-23 |
Genre | : Computers |
ISBN | : 9780127039701 |
This book is concerned with the theory and application of fractal geometry in digital imaging. Throughout the book, a series of new approaches to defining fractals are illustrated, such as the analysis of the fractal power spectrum and the use of fractional differentials. Several new algorithms and applications are also discussed and applied to real life images. Fractal Geometry in Digital imaging will appeal to postgraduates, researchers and practitioners in image processing, mathematics and computing, information technology and engineering.
Author | : James F. Peters |
Publisher | : Springer Nature |
Total Pages | : 455 |
Release | : 2019-10-03 |
Genre | : Technology & Engineering |
ISBN | : 303022192X |
This book discusses the computational geometry, topology and physics of digital images and video frame sequences. This trio of computational approaches encompasses the study of shape complexes, optical vortex nerves and proximities embedded in triangulated video frames and single images, while computational geometry focuses on the geometric structures that infuse triangulated visual scenes. The book first addresses the topology of cellular complexes to provide a basis for an introductory study of the computational topology of visual scenes, exploring the fabric, shapes and structures typically found in visual scenes. The book then examines the inherent geometry and topology of visual scenes, and the fine structure of light and light caustics of visual scenes, which bring into play catastrophe theory and the appearance of light caustic folds and cusps. Following on from this, the book introduces optical vortex nerves in triangulated digital images. In this context, computational physics is synonymous with the study of the fine structure of light choreographed in video frames. This choreography appears as a sequence of snapshots of light reflected and refracted from surface shapes, providing a solid foundation for detecting, analyzing and classifying visual scene shapes.
Author | : Daniel Cohen-Or |
Publisher | : CRC Press |
Total Pages | : 238 |
Release | : 2015-05-21 |
Genre | : Computers |
ISBN | : 1498706304 |
A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing shows how to use a collection of mathematical techniques to solve important problems in applied mathematics and computer science areas. The book discusses fundamental tools in analytical geometry and linear algebra. It covers a wide range of topics
Author | : Richard Hartley |
Publisher | : Cambridge University Press |
Total Pages | : 676 |
Release | : 2004-03-25 |
Genre | : Computers |
ISBN | : 1139449141 |
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.