Electromagnetic Modeling and Simulation

Electromagnetic Modeling and Simulation
Author: Levent Sevgi
Publisher: John Wiley & Sons
Total Pages: 665
Release: 2014-03-13
Genre: Science
ISBN: 111887711X

This unique book presents simple, easy-to-use, but effective short codes as well as virtual tools that can be used by electrical, electronic, communication, and computer engineers in a broad range of electrical engineering problems Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In this book, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. Unique in coverage and tutorial approach, Electromagnetic Modeling and Simulation covers fundamental analytical and numerical models that are widely used in teaching, research, and engineering designs—including mode and ray summation approaches with the canonical 2D nonpenetrable parallel plate waveguide as well as FDTD, MoM, and SSPE scripts. The book also establishes an intelligent balance among the essentials of EM MODSIM: The Problem (the physics), The Theory and Models (mathematical background and analytical solutions), and The Simulations (code developing plus validation, verification, and calibration). Classroom tested in graduate-level and short courses, Electromagnetic Modeling and Simulation: Clarifies concepts through numerous worked problems and quizzes provided throughout the book Features valuable MATLAB-based, user-friendly, effective engineering and research virtual design tools Includes sample scenarios and video clips recorded during characteristic simulations that visually impact learning—available on wiley.com Provides readers with their first steps in EM MODSIM as well as tools for medium and high-level code developers and users Electromagnetic Modeling and Simulation thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling, making it an ideal resource for electrical engineers and researchers.

Microwave Circuit Modeling Using Electromagnetic Field Simulation

Microwave Circuit Modeling Using Electromagnetic Field Simulation
Author: Daniel G. Swanson
Publisher: Artech House
Total Pages: 508
Release: 2003
Genre: Science
ISBN: 9781580536882

Annotation This practical "how to" book is an ideal introduction to electromagnetic field-solvers. Where most books in this area are strictly theoretical, this unique resource provides engineers with helpful advice on selecting the right tools for their RF (radio frequency) and high-speed digital circuit design work

Electromagnetic Diffraction Modeling and Simulation with MATLAB

Electromagnetic Diffraction Modeling and Simulation with MATLAB
Author: Gökhan Apaydin
Publisher: Artech House
Total Pages: 364
Release: 2021-02-28
Genre: Science
ISBN: 1630817805

This exciting new resource presents a comprehensive introduction to the fundamentals of diffraction of two-dimensional canonical structures, including wedge, strip, and triangular cylinder with different boundary conditions. Maxwell equations are discussed, along with wave equation and scattered, diffracted and fringe fields. Geometric optics, as well as the geometric theory of diffraction are explained. With MATLAB scripts included for several well-known electromagnetic diffraction problems, this book discusses diffraction fundamentals of two-dimensional structures with different boundary conditions and analytical numerical methods that are used to show diffraction. The book introduces fundamental concepts of electromagnetic problems, identities, and definitions for diffraction modeling. Basic coordinate systems, boundary conditions, wave equation, and Green’s function problem are given. The scattered fields, diffracted fields, and fringe fields, radar cross section for diffraction modeling are presented. Behaviors of electromagnetic waves around the two-dimensional canonical wedge and canonical strip are also explored. Diffraction of trilateral cylinders and wedges with rounded edges is investigated as well as double tip diffraction using Finite Difference Time Domain and Method of Moments. A MATLAB based virtual tool, developed with graphical user interface (GUI), for the visualization of both fringe currents and fringe waves is included, using numerical FDTD and MoM algorithm and High-Frequency Asymptotics approaches.

The Finite Element Method for Electromagnetic Modeling

The Finite Element Method for Electromagnetic Modeling
Author: Gérard Meunier
Publisher: John Wiley & Sons
Total Pages: 618
Release: 2010-01-05
Genre: Science
ISBN: 0470393807

Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.

Mathematical Models and Numerical Simulation in Electromagnetism

Mathematical Models and Numerical Simulation in Electromagnetism
Author: Alfredo Bermúdez de Castro
Publisher: Springer
Total Pages: 440
Release: 2014-07-22
Genre: Mathematics
ISBN: 3319029495

The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

Semiconductor Modeling:

Semiconductor Modeling:
Author: Roy Leventhal
Publisher: Springer Science & Business Media
Total Pages: 769
Release: 2007-01-10
Genre: Technology & Engineering
ISBN: 0387241604

Discusses process variation, model accuracy, design flow and many other practical engineering, reliability and manufacturing issues Gives a good overview for a person who is not an expert in modeling and simulation, enabling them to extract the necessary information to competently use modeling and simulation programs Written for engineering students and product design engineers

Computational Electromagnetic-Aerodynamics

Computational Electromagnetic-Aerodynamics
Author: Joseph J. S. Shang
Publisher: John Wiley & Sons
Total Pages: 456
Release: 2016-03-22
Genre: Technology & Engineering
ISBN: 1119155940

Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields and fluid flow and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physic kinetics, and plasmadynamics Integrates interlinking computational model and simulation techniques of aerodynamics and electromagnetics Combines classic plasma drift-diffusion theory and electron impact ionization modeling for electromagnetic-aerodynamic interactions Describes models of internal degrees of freedom for vibration relaxation and electron excitations

Electromagnetic Simulation Using the FDTD Method with Python

Electromagnetic Simulation Using the FDTD Method with Python
Author: Jennifer E. Houle
Publisher: John Wiley & Sons
Total Pages: 224
Release: 2020-01-15
Genre: Science
ISBN: 1119565804

Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community. Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered in include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning. Electromagnetic Simulation Using the FDTD Method with Python: Guides the reader from basic programs to complex, three-dimensional programs in a tutorial fashion Includes a rewritten fifth chapter that illustrates the most interesting applications in FDTD and the advanced graphics techniques of Python Covers peripheral topics pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transform Provides Python simulation programs on an accompanying website An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python will also benefit scientists and engineers interested in the subject.

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB
Author: Sergey N. Makarov
Publisher: John Wiley & Sons
Total Pages: 616
Release: 2015-05-13
Genre: Science
ISBN: 1119052467

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.