Extremal Combinatorics

Extremal Combinatorics
Author: Stasys Jukna
Publisher: Springer Science & Business Media
Total Pages: 389
Release: 2013-03-09
Genre: Computers
ISBN: 3662046504

This is a concise, up-to-date introduction to extremal combinatorics for non-specialists. Strong emphasis is made on theorems with particularly elegant and informative proofs which may be called the gems of the theory. A wide spectrum of the most powerful combinatorial tools is presented, including methods of extremal set theory, the linear algebra method, the probabilistic method and fragments of Ramsey theory. A thorough discussion of recent applications to computer science illustrates the inherent usefulness of these methods.

Extremal Problems for Finite Sets

Extremal Problems for Finite Sets
Author: Peter Frankl
Publisher: American Mathematical Soc.
Total Pages: 234
Release: 2018-08-15
Genre: Mathematics
ISBN: 1470440393

One of the great appeals of Extremal Set Theory as a subject is that the statements are easily accessible without a lot of mathematical background, yet the proofs and ideas have applications in a wide range of fields including combinatorics, number theory, and probability theory. Written by two of the leading researchers in the subject, this book is aimed at mathematically mature undergraduates, and highlights the elegance and power of this field of study. The first half of the book provides classic results with some new proofs including a complete proof of the Ahlswede-Khachatrian theorem as well as some recent progress on the Erdos matching conjecture. The second half presents some combinatorial structural results and linear algebra methods including the Deza-Erdos-Frankl theorem, application of Rodl's packing theorem, application of semidefinite programming, and very recent progress (obtained in 2016) on the Erdos-Szemeredi sunflower conjecture and capset problem. The book concludes with a collection of challenging open problems.

Extremal Finite Set Theory

Extremal Finite Set Theory
Author: Daniel Gerbner
Publisher: CRC Press
Total Pages: 292
Release: 2018-10-12
Genre: Mathematics
ISBN: 0429804113

Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.

Combinatorics

Combinatorics
Author: Pavle Mladenović
Publisher: Springer
Total Pages: 372
Release: 2019-03-13
Genre: Mathematics
ISBN: 3030008312

This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.

A Course in Combinatorics

A Course in Combinatorics
Author: J. H. van Lint
Publisher: Cambridge University Press
Total Pages: 620
Release: 2001-11-22
Genre: Mathematics
ISBN: 9780521006019

This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.

Geometric Combinatorics

Geometric Combinatorics
Author: Ezra Miller
Publisher: American Mathematical Soc.
Total Pages: 705
Release: 2007
Genre: Combinatorial analysis
ISBN: 0821837362

Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.

Extremal Combinatorial Problems and Their Applications

Extremal Combinatorial Problems and Their Applications
Author: B.S. Stechkin
Publisher: Springer
Total Pages: 207
Release: 2007-08-19
Genre: Computers
ISBN: 0585296022

Combinatorial research has proceeded vigorously in Russia over the last few decades, based on both translated Western sources and original Russian material. The present volume extends the extremal approach to the solution of a large class of problems, including some that were hitherto regarded as exclusively algorithmic, and broadens the choice of theoretical bases for modelling real phenomena in order to solve practical problems. Audience: Graduate students of mathematics and engineering interested in the thematics of extremal problems and in the field of combinatorics in general. Can be used both as a textbook and as a reference handbook.

Combinatorics Advances

Combinatorics Advances
Author: Charles J. Colbourn
Publisher: Springer Science & Business Media
Total Pages: 331
Release: 2013-12-01
Genre: Mathematics
ISBN: 146133554X

On March 28~31, 1994 (Farvardin 8~11, 1373 by Iranian calendar), the Twenty fifth Annual Iranian Mathematics Conference (AIMC25) was held at Sharif University of Technology in Tehran, Islamic Republic of Iran. Its sponsors in~ eluded the Iranian Mathematical Society, and the Department of Mathematical Sciences at Sharif University of Technology. Among the keynote speakers were Professor Dr. Andreas Dress and Professor Richard K. Guy. Their plenary lec~ tures on combinatorial themes were complemented by invited and contributed lectures in a Combinatorics Session. This book is a collection of refereed papers, submitted primarily by the participants after the conference. The topics covered are diverse, spanning a wide range of combinatorics and al~ lied areas in discrete mathematics. Perhaps the strength and variety of the pa~ pers here serve as the best indications that combinatorics is advancing quickly, and that the Iranian mathematics community contains very active contributors. We hope that you find the papers mathematically stimulating, and look forward to a long and productive growth of combinatorial mathematics in Iran.

Sparsity

Sparsity
Author: Jaroslav Nešetřil
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2012-04-24
Genre: Mathematics
ISBN: 3642278752

This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This approach is very robust and it has many remarkable properties. For example the classification is expressible in many different ways involving most extremal combinatorial invariants. This study of sparse structures found applications in such diverse areas as algorithmic graph theory, complexity of algorithms, property testing, descriptive complexity and mathematical logic (homomorphism preservation,fixed parameter tractability and constraint satisfaction problems). It should be stressed that despite of its generality this approach leads to linear (and nearly linear) algorithms. Jaroslav Nešetřil is a professor at Charles University, Prague; Patrice Ossona de Mendez is a CNRS researcher et EHESS, Paris. This book is related to the material presented by the first author at ICM 2010.