Geometric Structures of Information

Geometric Structures of Information
Author: Frank Nielsen
Publisher: Springer
Total Pages: 395
Release: 2018-11-19
Genre: Technology & Engineering
ISBN: 3030025209

This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI’2017 – Geometric Science of Information.

Geometric Theory of Information

Geometric Theory of Information
Author: Frank Nielsen
Publisher: Springer Science & Business Media
Total Pages: 397
Release: 2014-05-08
Genre: Technology & Engineering
ISBN: 3319053175

This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition and natural language treatment which are also substantially relevant for the industry.

Information Geometry and Its Applications

Information Geometry and Its Applications
Author: Shun-ichi Amari
Publisher: Springer
Total Pages: 378
Release: 2016-02-02
Genre: Mathematics
ISBN: 4431559787

This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.

Geometric Science of Information

Geometric Science of Information
Author: Frank Nielsen
Publisher: Springer Nature
Total Pages: 929
Release: 2021-07-14
Genre: Computers
ISBN: 3030802094

This book constitutes the proceedings of the 5th International Conference on Geometric Science of Information, GSI 2021, held in Paris, France, in July 2021. The 98 papers presented in this volume were carefully reviewed and selected from 125 submissions. They cover all the main topics and highlights in the domain of geometric science of information, including information geometry manifolds of structured data/information and their advanced applications. The papers are organized in the following topics: Probability and statistics on Riemannian Manifolds; sub-Riemannian geometry and neuromathematics; shapes spaces; geometry of quantum states; geometric and structure preserving discretizations; information geometry in physics; Lie group machine learning; geometric and symplectic methods for hydrodynamical models; harmonic analysis on Lie groups; statistical manifold and Hessian information geometry; geometric mechanics; deformed entropy, cross-entropy, and relative entropy; transformation information geometry; statistics, information and topology; geometric deep learning; topological and geometrical structures in neurosciences; computational information geometry; manifold and optimization; divergence statistics; optimal transport and learning; and geometric structures in thermodynamics and statistical physics.

Geometric Structure of High-Dimensional Data and Dimensionality Reduction

Geometric Structure of High-Dimensional Data and Dimensionality Reduction
Author: Jianzhong Wang
Publisher: Springer Science & Business Media
Total Pages: 363
Release: 2012-04-28
Genre: Computers
ISBN: 3642274978

"Geometric Structure of High-Dimensional Data and Dimensionality Reduction" adopts data geometry as a framework to address various methods of dimensionality reduction. In addition to the introduction to well-known linear methods, the book moreover stresses the recently developed nonlinear methods and introduces the applications of dimensionality reduction in many areas, such as face recognition, image segmentation, data classification, data visualization, and hyperspectral imagery data analysis. Numerous tables and graphs are included to illustrate the ideas, effects, and shortcomings of the methods. MATLAB code of all dimensionality reduction algorithms is provided to aid the readers with the implementations on computers. The book will be useful for mathematicians, statisticians, computer scientists, and data analysts. It is also a valuable handbook for other practitioners who have a basic background in mathematics, statistics and/or computer algorithms, like internet search engine designers, physicists, geologists, electronic engineers, and economists. Jianzhong Wang is a Professor of Mathematics at Sam Houston State University, U.S.A.

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields
Author: Сергей Петрович Новиков
Publisher: American Mathematical Soc.
Total Pages: 658
Release: 2006
Genre: Mathematics
ISBN: 0821839292

Presents the basics of Riemannian geometry in its modern form as geometry of differentiable manifolds and the important structures on them. This book shows that Riemannian geometry has a great influence to several fundamental areas of modern mathematics and its applications.

Information Geometry and Population Genetics

Information Geometry and Population Genetics
Author: Julian Hofrichter
Publisher: Springer
Total Pages: 323
Release: 2017-02-23
Genre: Mathematics
ISBN: 3319520458

The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

Methods of Information Geometry

Methods of Information Geometry
Author: Shun-ichi Amari
Publisher: American Mathematical Soc.
Total Pages: 220
Release: 2000
Genre: Computers
ISBN: 9780821843024

Information geometry provides the mathematical sciences with a fresh framework of analysis. This book presents a comprehensive introduction to the mathematical foundation of information geometry. It provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, and convex analysis.

Geometric Data Structures for Computer Graphics

Geometric Data Structures for Computer Graphics
Author: Elmar Langetepe
Publisher: A K Peters/CRC Press
Total Pages: 344
Release: 2006
Genre: Computers
ISBN:

This book focuses on algorithms and geometric data structures that have proven to be versatile, efficient and fundamental. It endows practitioners in the computer graphics field with a working knowledge of a wide range of geometric data structures from computational geometry.