Gradient-Index Optics

Gradient-Index Optics
Author: C. Gomez-Reino
Publisher: Springer Science & Business Media
Total Pages: 247
Release: 2012-12-06
Genre: Science
ISBN: 3662047411

This book provides a comprehensive and thorough treatment on fundamentals and applications of light propagation through inhomogeneous media. The authors present a description of the phenomena, components and technology used in GRIN Optics, and analyze various applications.

Gradient Index Optics

Gradient Index Optics
Author: Erich Merchand
Publisher: Elsevier
Total Pages: 177
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0323160662

Gradient Index Optics deals with the application of gradients in optical systems of classical types: gradient index lenses. The emphasis is on the theory and practice related to gradient index lenses. Only isotropic media are considered since they are the ones for which the refractive index at each point is independent of direction. Comprised of 12 chapters, this book begins with a historical background on the use of gradients in astronomy and developments in gradient index lenses, along with the underlying basic theory. The discussion then turns to spherical gradients, paying particular attention to rays, Maxwell's fisheye lens, the Luneburg lens, and astronomical refraction. Subsequent chapters focus on the ray trace in a spherical gradient; axial gradients and their use as an anti-reflection coating; radial gradients and ray tracing in a radial gradient; and fundamentals of aberration theory. The wood lens and ray trace in a general medium are also considered, together with methods for fabrication of gradient elements and measurement of index gradients using an approximate method and interferometric methods. This monograph will be of interest to physicists.

Optical Design Fundamentals for Infrared Systems

Optical Design Fundamentals for Infrared Systems
Author: Max J. Riedl
Publisher: SPIE Press
Total Pages: 206
Release: 2001
Genre: Science
ISBN: 9780819440518

The practical, popular 1995 tutorial has been thoroughly revised and updated, reflecting developments in technology and applications during the past decade. New chapters address wave aberrations, thermal effects, design examples, and diamond turning.

Sol-Gel Optics

Sol-Gel Optics
Author: Lisa C. Klein
Publisher: Springer Science & Business Media
Total Pages: 589
Release: 2013-11-27
Genre: Technology & Engineering
ISBN: 1461527503

Sol--Gel--Optics encompasses numerous schemes for fabricating optical materials from gels -- materials such as bulk optics, optical waveguides, doped oxides for laser and nonlinear optics, gradient refractive index (GRIN) optics, chemical sensors, environmental sensors, and `smart' windows. Sol--Gel--Optics: Processing and Applications provides in-depth coverage of the synthesis and fabrication of these materials and discusses the optics related to microporous, amorphous, crystalline and composite materials. The reader will also find in this book detailed descriptions of new developments in silica optics, bulk optics, waveguides and thin films. Various applications to sensor and device technology are highlighted. For researchers and students looking for novel optical materials, processing methods or device ideas, Sol--Gel--Optics: Processing and Applications surveys a wide array of promising new avenues for further investigation and for innovative applications. (This book is the first in a new subseries entitled `Electronic Materials: Science and Technology).

Geometrical Optics and Optical Design

Geometrical Optics and Optical Design
Author: Pantazis Mouroulis
Publisher: Oxford Series in Optical & Ima
Total Pages: 354
Release: 1997
Genre: Science
ISBN: 9780195089318

Geometrical Optics and Optical Design is an up-to-date introductory treatment of geometrical optics which is intended to lead students toward the modern practices of computer-aided optical design. The principles of Gaussian optics and first-order layout and design are emphasized, based on the tracing of two paraxial rays and the associated optical invariant. The radiometry of lens systems is seen to rest on the same concepts. Third-order aberration theory is developed in detail. Complete examples of third-order design are provided, together with software tools that allow students to follow the examples in detail or to develop other examples independently. Several problems at the end of each chapter allow students to practice and extend the concepts taught.

The Art and Science of Optical Design

The Art and Science of Optical Design
Author: Robert R. Shannon
Publisher: Cambridge University Press
Total Pages: 630
Release: 1997-06-13
Genre: Science
ISBN: 9780521588683

The Art and Science of Optical Design is a comprehensive introduction to lens design, covering the fundamental physical principles and key engineering issues. Several practical examples of modern computer-aided lens design are worked out in detail from start to finish. The basic theory and results of optics are presented early on in the book, along with a discussion of optical materials. Aberrations, and their correction, and image analysis are then covered in great detail. Subsequent chapters deal with design optimization and tolerance analysis. Several design examples are then given, beginning with basic lens design forms, and progressing to advanced systems such as gradient index and diffractive optical components. In covering all aspects of optical design, including the use of modern lens design software, this book will be invaluable to students of optical engineering as well as to anyone engaged in optical design at any stage.

Green's Function Integral Equation Methods in Nano-Optics

Green's Function Integral Equation Methods in Nano-Optics
Author: Thomas M. Søndergaard
Publisher: CRC Press
Total Pages: 418
Release: 2019-01-30
Genre: Technology & Engineering
ISBN: 1351260197

This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics

Transformation Electromagnetics and Metamaterials

Transformation Electromagnetics and Metamaterials
Author: Douglas H. Werner
Publisher: Springer Science & Business Media
Total Pages: 500
Release: 2013-07-19
Genre: Technology & Engineering
ISBN: 1447149963

Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.

High Resolution Imaging in Microscopy and Ophthalmology

High Resolution Imaging in Microscopy and Ophthalmology
Author: Josef F. Bille
Publisher: Springer
Total Pages: 411
Release: 2019-08-13
Genre: Medical
ISBN: 3030166384

This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.