Green's Functions with Applications

Green's Functions with Applications
Author: Dean G. Duffy
Publisher: CRC Press
Total Pages: 685
Release: 2015-03-10
Genre: Mathematics
ISBN: 1482251035

Since publication of the first edition over a decade ago, Green’s Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green’s function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art. The book opens with necessary background information: a new chapter on the historical development of the Green’s function, coverage of the Fourier and Laplace transforms, a discussion of the classical special functions of Bessel functions and Legendre polynomials, and a review of the Dirac delta function. The text then presents Green’s functions for each class of differential equation (ordinary differential, wave, heat, and Helmholtz equations) according to the number of spatial dimensions and the geometry of the domain. Detailing step-by-step methods for finding and computing Green’s functions, each chapter contains a special section devoted to topics where Green’s functions particularly are useful. For example, in the case of the wave equation, Green’s functions are beneficial in describing diffraction and waves. To aid readers in developing practical skills for finding Green’s functions, worked examples, problem sets, and illustrations from acoustics, applied mechanics, antennas, and the stability of fluids and plasmas are featured throughout the text. A new chapter on numerical methods closes the book. Included solutions and hundreds of references to the literature on the construction and use of Green's functions make Green’s Functions with Applications, Second Edition a valuable sourcebook for practitioners as well as graduate students in the sciences and engineering.

Green's Functions with Applications

Green's Functions with Applications
Author: Dean G. Duffy
Publisher: CRC Press
Total Pages: 461
Release: 2001-05-31
Genre: Mathematics
ISBN: 1420034790

Since its introduction in 1828, using Green's functions has become a fundamental mathematical technique for solving boundary value problems. Most treatments, however, focus on its theory and classical applications in physics rather than the practical means of finding Green's functions for applications in engineering and the sciences. Green's

Green’s Functions in Quantum Physics

Green’s Functions in Quantum Physics
Author: Eleftherios N. Economou
Publisher: Springer Science & Business Media
Total Pages: 325
Release: 2013-03-14
Genre: Science
ISBN: 3662023695

In this edition the second and main part of the book has been considerably expanded as to cover important applications of the formalism. In Chap.5 a section was added outlining the extensive role of the tight binding (or equivalently the linear combination of atomic-like orbitals) approach to many branches of solid-state physics. Some additional informa tion (including a table of numerical values) regarding square and cubic lattice Green's functions were incorporated. In Chap.6 the difficult subjects of superconductivity and the Kondo effect are examined by employing an appealingly simple connection to the question of the existence of a bound state in a very shallow potential well. The existence of such a bound state depends entirely on the form of the un perturbed density of states near the end of the spectrum: if the density of states blows up there is always at least one bound state. If the density of states approaches zero continuously, a critical depth (and/or width) of the well must be reached in order to have a bound state. The borderline case of a finite discontinuity (which is very important to superconductivity and the Kondo effect) always produces a bound state with an exponentially small binding energy.

Green's Functions and Linear Differential Equations

Green's Functions and Linear Differential Equations
Author: Prem K. Kythe
Publisher: CRC Press
Total Pages: 376
Release: 2011-01-21
Genre: Mathematics
ISBN: 1439840091

Green's Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green's function method, which is used to solve initial and boundary

Green's Functions

Green's Functions
Author: Yuri A. Melnikov
Publisher: Walter de Gruyter
Total Pages: 448
Release: 2012-04-02
Genre: Mathematics
ISBN: 3110253399

Green's functions represent one of the classical and widely used issues in the area of differential equations. This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. The book is attractive for practical needs: It contains many easily computable or computer friendly representations of Green's functions, includes all the standard Green's functions and many novel ones, and provides innovative and new approaches that might lead to Green's functions. The book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations.

Elements of Green's Functions and Propagation

Elements of Green's Functions and Propagation
Author: Gabriel Barton
Publisher: Oxford University Press
Total Pages: 484
Release: 1989
Genre: Mathematics
ISBN: 9780198519980

This text takes the student with a background in undergraduate physics and mathematics towards the skills and insights needed for graduate work in theoretical physics. The author uses Green's functions to explore the physics of potentials, diffusion, and waves. These are important phenomena in their own right, but this study of the partial differential equations describing them also prepares the student for more advanced applications in many-body physics and field theory. Calculations are carried through in enough detail for self-study, and case histories illustrate the interplay between physical insight and mathematical formalism. The aim is to develop the habit of dialogue with the equations and the craftsmanship this fosters in tackling the problem. The book is based on the author's extensive teaching experience.

Green's Functions and Boundary Value Problems

Green's Functions and Boundary Value Problems
Author: Ivar Stakgold
Publisher: John Wiley & Sons
Total Pages: 883
Release: 2011-03-01
Genre: Mathematics
ISBN: 0470906529

Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.

Green’s Functions in the Theory of Ordinary Differential Equations

Green’s Functions in the Theory of Ordinary Differential Equations
Author: Alberto Cabada
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2013-11-29
Genre: Mathematics
ISBN: 1461495067

This book provides a complete and exhaustive study of the Green’s functions. Professor Cabada first proves the basic properties of Green's functions and discusses the study of nonlinear boundary value problems. Classic methods of lower and upper solutions are explored, with a particular focus on monotone iterative techniques that flow from them. In addition, Cabada proves the existence of positive solutions by constructing operators defined in cones. The book will be of interest to graduate students and researchers interested in the theoretical underpinnings of boundary value problem solutions.