Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory
Author: J.C. Willems
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475729537

Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.

Mathematical Systems Theory I

Mathematical Systems Theory I
Author: Diederich Hinrichsen
Publisher: Springer Science & Business Media
Total Pages: 818
Release: 2011-08-03
Genre: Mathematics
ISBN: 3540441255

This book presents the mathematical foundations of systems theory in a self-contained, comprehensive, detailed and mathematically rigorous way. It is devoted to the analysis of dynamical systems and combines features of a detailed introductory textbook with that of a reference source. The book contains many examples and figures illustrating the text which help to bring out the intuitive ideas behind the mathematical constructions.

Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory
Author: Christiaan Heij
Publisher: Springer Science & Business Media
Total Pages: 169
Release: 2006-12-18
Genre: Science
ISBN: 3764375493

This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering; the focus is on discrete time systems. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation.

Mathematical Control Theory

Mathematical Control Theory
Author: Jerzy Zabczyk
Publisher: Springer Science & Business Media
Total Pages: 276
Release: 2008
Genre: Language Arts & Disciplines
ISBN: 9780817647322

In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.

Mathematical Systems Theory in Biology, Communications, Computation and Finance

Mathematical Systems Theory in Biology, Communications, Computation and Finance
Author: Joachim Rosenthal
Publisher: Springer Science & Business Media
Total Pages: 528
Release: 2003-09-02
Genre: Science
ISBN: 9780387403199

This volume contains survey and research articles by some of the leading researchers in mathematical systems theory - a vibrant research area in its own right. Many authors have taken special care that their articles are self-contained and accessible also to non-specialists.

Mathematical Control Theory

Mathematical Control Theory
Author: Eduardo D. Sontag
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2013-11-21
Genre: Mathematics
ISBN: 1461205778

Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.

General Systems Theory: Mathematical Foundations

General Systems Theory: Mathematical Foundations
Author:
Publisher: Academic Press
Total Pages: 283
Release: 1975-03-21
Genre: Technology & Engineering
ISBN: 008095622X

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Author: Kenneth R. Meyer
Publisher: Springer
Total Pages: 389
Release: 2017-05-04
Genre: Mathematics
ISBN: 3319536915

This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)