Introduction to Optimal Control Theory

Introduction to Optimal Control Theory
Author: Jack Macki
Publisher: Springer Science & Business Media
Total Pages: 179
Release: 2012-12-06
Genre: Science
ISBN: 1461256712

This monograph is an introduction to optimal control theory for systems governed by vector ordinary differential equations. It is not intended as a state-of-the-art handbook for researchers. We have tried to keep two types of reader in mind: (1) mathematicians, graduate students, and advanced undergraduates in mathematics who want a concise introduction to a field which contains nontrivial interesting applications of mathematics (for example, weak convergence, convexity, and the theory of ordinary differential equations); (2) economists, applied scientists, and engineers who want to understand some of the mathematical foundations. of optimal control theory. In general, we have emphasized motivation and explanation, avoiding the "definition-axiom-theorem-proof" approach. We make use of a large number of examples, especially one simple canonical example which we carry through the entire book. In proving theorems, we often just prove the simplest case, then state the more general results which can be proved. Many of the more difficult topics are discussed in the "Notes" sections at the end of chapters and several major proofs are in the Appendices. We feel that a solid understanding of basic facts is best attained by at first avoiding excessive generality. We have not tried to give an exhaustive list of references, preferring to refer the reader to existing books or papers with extensive bibliographies. References are given by author's name and the year of publication, e.g., Waltman [1974].

Optimal Control Theory

Optimal Control Theory
Author: Donald E. Kirk
Publisher: Courier Corporation
Total Pages: 466
Release: 2012-04-26
Genre: Technology & Engineering
ISBN: 0486135071

Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.

Optimal Control Theory

Optimal Control Theory
Author: L.D. Berkovitz
Publisher: Springer Science & Business Media
Total Pages: 315
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475760973

This book is an introduction to the mathematical theory of optimal control of processes governed by ordinary differential eq- tions. It is intended for students and professionals in mathematics and in areas of application who want a broad, yet relatively deep, concise and coherent introduction to the subject and to its relati- ship with applications. In order to accommodate a range of mathema- cal interests and backgrounds among readers, the material is arranged so that the more advanced mathematical sections can be omitted wi- out loss of continuity. For readers primarily interested in appli- tions a recommended minimum course consists of Chapter I, the sections of Chapters II, III, and IV so recommended in the introductory sec tions of those chapters, and all of Chapter V. The introductory sec tion of each chapter should further guide the individual reader toward material that is of interest to him. A reader who has had a good course in advanced calculus should be able to understand the defini tions and statements of the theorems and should be able to follow a substantial portion of the mathematical development. The entire book can be read by someone familiar with the basic aspects of Lebesque integration and functional analysis. For the reader who wishes to find out more about applications we recommend references [2], [13], [33], [35], and [50], of the Bibliography at the end of the book.

Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
Total Pages: 255
Release: 2012
Genre: Mathematics
ISBN: 0691151873

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control

Optimal Control Theory with Applications in Economics

Optimal Control Theory with Applications in Economics
Author: Thomas A. Weber
Publisher: MIT Press
Total Pages: 387
Release: 2011-09-30
Genre: Business & Economics
ISBN: 0262015730

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

Optimal Control

Optimal Control
Author: Leslie M. Hocking
Publisher: Oxford University Press
Total Pages: 276
Release: 1991
Genre: Computers
ISBN: 9780198596820

Systems that evolve with time occur frequently in nature and modelling the behavior of such systems provides an important application of mathematics. These systems can be completely deterministic, but it may be possible too to control their behavior by intervention through "controls". The theory of optimal control is concerned with determining such controls which, at minimum cost, either direct the system along a given trajectory or enable it to reach a given point in its state space. This textbook is a straightforward introduction to the theory of optimal control with an emphasis on presenting many different applications. Professor Hocking has taken pains to ensure that the theory is developed to display the main themes of the arguments but without using sophisticated mathematical tools. Problems in this setting can arise across a wide range of subjects and there are illustrative examples of systems from fields as diverse as dynamics, economics, population control, and medicine. Throughout there are many worked examples, and numerous exercises (with solutions) are provided.

A Primer on the Calculus of Variations and Optimal Control Theory

A Primer on the Calculus of Variations and Optimal Control Theory
Author: Mike Mesterton-Gibbons
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2009
Genre: Mathematics
ISBN: 0821847724

The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.

Optimal Control

Optimal Control
Author: Michael Athans
Publisher: Courier Corporation
Total Pages: 900
Release: 2013-04-26
Genre: Technology & Engineering
ISBN: 0486318184

Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.

Primer on Optimal Control Theory

Primer on Optimal Control Theory
Author: Jason L. Speyer
Publisher: SIAM
Total Pages: 316
Release: 2010-05-13
Genre: Mathematics
ISBN: 0898716942

A rigorous introduction to optimal control theory, which will enable engineers and scientists to put the theory into practice.