Author | : Sanad Al-Areqi |
Publisher | : Logos Verlag Berlin GmbH |
Total Pages | : 184 |
Release | : 2015-12-31 |
Genre | : Mathematics |
ISBN | : 3832541705 |
The problem of jointly designing a robust controller and an intelligent scheduler for networked control systems (NCSs) is addressed in this thesis. NCSs composing of multiple plants that share a single channel communication network with uncertain time-varying transmission times are modeled as switched polytopic systems with additive norm-bounded uncertainty. Switching is deployed to represent scheduling, the polytopic uncertainty to overapproximatively describe the uncertain time-varying transmission times. Based on the resulting NCS model and a state feedback control law, the control and scheduling codesign problem is then introduced and formulated as a robust (minimax) optimization problem with the objective of minimizing the worst-case value of an associated infinite time-horizon quadratic cost function. Five robust codesign strategies are investigated for tackling the introduced optimization problem, namely: Periodic control and scheduling (PCS), Receding-horizon control and scheduling (RHCS), Implementation-aware control and scheduling (IACS), Event-based control and scheduling (EBCS), Prediction-based control and scheduling (PBCS). All these codesign strategies are determined from LMI optimization problems based on the Lyapunov theory. The properties of each are evaluated and compared in terms of computational complexity and control performance based on simulation and experimental study, showing their effectiveness in improving the performance while utilizing the limited communication resources very efficiently.