Large-Scale PDE-Constrained Optimization

Large-Scale PDE-Constrained Optimization
Author: Lorenz T. Biegler
Publisher: Springer Science & Business Media
Total Pages: 347
Release: 2012-12-06
Genre: Mathematics
ISBN: 364255508X

Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.

Real-time PDE-constrained Optimization

Real-time PDE-constrained Optimization
Author: Lorenz T. Biegler
Publisher: SIAM
Total Pages: 335
Release: 2007-01-01
Genre: Differential equations, Partial
ISBN: 9780898718935

Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.

Frontiers in PDE-Constrained Optimization

Frontiers in PDE-Constrained Optimization
Author: Harbir Antil
Publisher: Springer
Total Pages: 435
Release: 2018-10-12
Genre: Mathematics
ISBN: 1493986368

This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.

Large-Scale PDE-Constrained Optimization in Applications

Large-Scale PDE-Constrained Optimization in Applications
Author: Subhendu Bikash Hazra
Publisher: Springer Science & Business Media
Total Pages: 216
Release: 2009-12-16
Genre: Mathematics
ISBN: 3642015026

With continuous development of modern computing hardware and applicable - merical methods, computational ?uid dynamics (CFD) has reached certain level of maturity so that it is being used routinely by scientists and engineers for ?uid ?ow analysis. Since most of the real-life applications involve some kind of optimization, it has been natural to extend the use of CFD tools from ?ow simulation to simu- tion based optimization. However, the transition from simulation to optimization is not straight forward, it requires proper interaction between advanced CFD meth- ologies and state-of-the-art optimization algorithms. The ultimate goal is to achieve optimal solution at the cost of few ?ow solutions. There is growing number of - search activities to achieve this goal. This book results from my work done on simulation based optimization problems at the Department of Mathematics, University of Trier, and reported in my postd- toral thesis (”Habilitationsschrift”) accepted by the Faculty-IV of this University in 2008. The focus of the work has been to develop mathematical methods and - gorithms which lead to ef?cient and high performance computational techniques to solve such optimization problems in real-life applications. Systematic development of the methods and algorithms are presented here. Practical aspects of implemen- tions are discussed at each level as the complexity of the problems increase, suppo- ing with enough number of computational examples.

Wavefield Inversion

Wavefield Inversion
Author: Armand Wirgin
Publisher: Springer Science & Business Media
Total Pages: 320
Release: 2000-04-19
Genre: Science
ISBN: 9783211833209

This book provides an up-to-date presentation of a broad range of contemporary problems in inverse scattering involving acoustic, elastic and electromagnetic waves. Descriptions will be given of traditional (but still in use and subject to on-going improvements) and more recent methods for identifying either: a) the homogenized material parameters of (spatially) unbounded or bounded heterogeneous media, or b) the detailed composition (spatial distribution of the material parameters) of unbounded or bounded heterogeneous media, or c) the location, shape, orientation and material characteristics of an object embedded in a wellcharacterized homogeneous, homogenized or heterogeneous unbounded or bounded medium, by inversion of reflected, transmitted or scattered spatiotemporal recorded waveforms resulting from the propagation of probe radiation within the medium.

Large-Scale Nonlinear Optimization

Large-Scale Nonlinear Optimization
Author: Gianni Pillo
Publisher: Springer Science & Business Media
Total Pages: 297
Release: 2006-06-03
Genre: Mathematics
ISBN: 0387300651

This book reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. Individual chapters, contributed by eminent authorities, provide an up-to-date overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications.

Optimization with PDE Constraints

Optimization with PDE Constraints
Author: Michael Hinze
Publisher: Springer Science & Business Media
Total Pages: 279
Release: 2008-10-16
Genre: Mathematics
ISBN: 1402088396

Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.

Large-Scale Scientific Computing

Large-Scale Scientific Computing
Author: Ivan Lirkov
Publisher: Springer Nature
Total Pages: 557
Release: 2022-03-17
Genre: Computers
ISBN: 3030975495

This book constitutes revised selected papers from the 13th International Conference on Large-Scale Scientific Computing, LSSC 23021, which was held in Sozopol, Bulgaria, during June 7-11, 2021. The 60 papers included in this book were carefully reviewed and selected from a total of 73 submissions. The volume also includes two invited talks in full paper length. The papers were organized in topical sections as follows: Fractional diffusion problems: numerical methods, algorithms and applications; large-scale models: numerical methods, parallel computations and applications; application of metaheuristics to large-scale problems; advanced discretizations and solvers for coupled systems of partial differential equations; optimal control of ODEs, PDEs and applications; tensor and matrix factorization for big-data analysis; machine learning and model order reduction for large scale predictive simulations; HPC and big data: algorithms and applications; and contributed papers.