Optical Tweezers

Optical Tweezers
Author: Philip H. Jones
Publisher: Cambridge University Press
Total Pages: 565
Release: 2015-12-03
Genre: Science
ISBN: 1107051169

A comprehensive guide to the theory, practice and applications of optical tweezers, combining state-of-the-art research with a strong pedagogic approach.

Optical Tweezers

Optical Tweezers
Author: Philip H. Jones
Publisher: Cambridge University Press
Total Pages: 565
Release: 2015-12-03
Genre: Science
ISBN: 1316419045

Combining state-of-the-art research with a strong pedagogic approach, this text provides a detailed and complete guide to the theory, practice and applications of optical tweezers. In-depth derivation of the theory of optical trapping and numerical modelling of optical forces are supported by a complete step-by-step design and construction guide for building optical tweezers, with detailed tutorials on collecting and analysing data. Also included are comprehensive reviews of optical tweezers research in fields ranging from cell biology to quantum physics. Featuring numerous exercises and problems throughout, this is an ideal self-contained learning package for advanced lecture and laboratory courses, and an invaluable guide to practitioners wanting to enter the field of optical manipulation. The text is supplemented by www.opticaltweezers.org, a forum for discussion and a source of additional material including free-to-download, customisable research-grade software (OTS) for calculation of optical forces, digital video microscopy, optical tweezers calibration and holographic optical tweezers.

Optical Tweezers

Optical Tweezers
Author: Philip H. Jones
Publisher:
Total Pages: 547
Release: 2015
Genre: Optical tweezers
ISBN: 9781107279711

Optical Tweezers

Optical Tweezers
Author: Arne Gennerich
Publisher: Humana
Total Pages: 0
Release: 2016-11-15
Genre: Science
ISBN: 9781493964192

The aim of this volume is to provide a comprehensive overview of optical tweezers setups, both in practical and theoretical terms, to help biophysicists, biochemists, and cell biologists to build and calibrate their own instruments and to perform force measurements on mechanoenzymes both in isolation in vitro and in living cells. Chapters have been divided in three parts focusing on theory and practical design of optical tweezers, detailed protocols for performing force measurements on single DNA- and microtubule/actin-associated mechanoenzymes in isolation, and describing recent advances that have opened up quantitative force measurements in living cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Optical Tweezers: Methods and Protocols aims help to further expand the accessibility and use of optical traps by scientists of diverse disciplines.

Optical Tweezers

Optical Tweezers
Author: Miles J. Padgett
Publisher: CRC Press
Total Pages: 510
Release: 2010-06-02
Genre: Science
ISBN: 1420074148

The technical development of optical tweezers, along with their application in the biological and physical sciences, has progressed significantly since the demonstration of an optical trap for micron-sized particles based on a single, tightly focused laser beam was first reported more than twenty years ago. Bringing together many landmark papers on

Optical Trapping and Manipulation of Neutral Particles Using Lasers

Optical Trapping and Manipulation of Neutral Particles Using Lasers
Author: Arthur Ashkin
Publisher: World Scientific Publishing Company Incorporated
Total Pages: 915
Release: 2006
Genre: Science
ISBN: 9789810240578

This important volume contains selected papers and extensive commentaries on laser trapping and manipulation of neutral particles using radiation pressure forces. Such techniques apply to a variety of small particles, such as atoms, molecules, macroscopic dielectric particles, living cells, and organelles within cells. These optical methods have had a revolutionary impact on the fields of atomic and molecular physics, biophysics, and many aspects of nanotechnology.In atomic physics, the trapping and cooling of atoms down to nanokelvins and even picokelvin temperatures are possible. These are the lowest temperatures in the universe. This made possible the first demonstration of Bose-Einstein condensation of atomic and molecular vapors. Some of the applications are high precision atomic clocks, gyroscopes, the measurement of gravity, cryptology, atomic computers, cavity quantum electrodynamics and coherent atom lasers.A major application in biophysics is the study of the mechanical properties of the many types of motor molecules, mechanoenzymes, and other macromolecules responsible for the motion of organelles within cells and the locomotion of entire cells. Unique in vitro and in vivo assays study the driving forces, stepping motion, kinetics, and efficiency of these motors as they move along the cell's cytoskeleton. Positional and temporal resolutions have been achieved, making possible the study of RNA and DNA polymerases, as they undergo their various copying, backtracking, and error correcting functions on a single base pair basis.Many applications in nanotechnology involve particle and cell sorting, particle rotation, microfabrication of simple machines, microfluidics, and other micrometer devices. The number of applications continues to grow at a rapid rate.The author is the discoverer of optical trapping and optical tweezers. With his colleagues, he first demonstrated optical levitation, the trapping of atoms, and tweezer trapping and manipulation of living cells and biological particles.This is the only review volume covering the many fields of optical trapping and manipulation. The intention is to provide a selective guide to the literature and to teach how optical traps really work.

Optical Tweezers

Optical Tweezers
Author: Arne Gennerich
Publisher: Springer Nature
Total Pages: 753
Release: 2022-09-05
Genre: Science
ISBN: 1071622293

This detailed volume explores a wide variety of techniques involving optical tweezers, a technology that has become increasingly more accessible to a broad range of researchers. Beginning with recent technical advances, the book continues by covering the application of optical tweezers to study DNA-protein interactions and DNA motors, protocols to perform protein (un)folding experiments, the application of optical tweezers to study actin- and microtubule-associated motor proteins, and well as protocols for investigating the function and mechanical properties of microtubules and intermediate filaments, and more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Optical Tweezers: Methods and Protocols, Second Edition serves as an ideal resource for expanding the accessibility and use of optical traps by scientists of diverse disciplines.

Laser Tweezers in Cell Biology

Laser Tweezers in Cell Biology
Author:
Publisher: Academic Press
Total Pages: 241
Release: 1997-11-24
Genre: Science
ISBN: 0080859534

Volume 55 in Methods in Cell Biology is a concise laboratory book that emphasizes the methods and technologies needed to use single polarized laser light source that functions simultaneously as an optical trap and a dual-beam interferometer.* * Provides a practical laboratory guide for methods and technologies used with laser tweezers* Includes comprehensive and easy-to-follow protocols

Structured Light Fields

Structured Light Fields
Author: Mike Wördemann
Publisher: Springer Science & Business Media
Total Pages: 139
Release: 2012-05-16
Genre: Science
ISBN: 3642293239

The optical trapping of colloidal matter is an unequalled field of technology for enabling precise handling of particles on microscopic scales, solely by the force of light. Although the basic concept of optical tweezers, which are based on a single laser beam, has matured and found a vast number of exciting applications, in particular in the life sciences, there are strong demands for more sophisticated approaches. This thesis gives an introductory overview of existing optical micromanipulation techniques and reviews the state-of-the-art of the emerging field of structured light fields and their applications in optical trapping, micromanipulation, and organisation. The author presents established, and introduces novel concepts for the holographic and non-holographic shaping of a light field. A special emphasis of the work is the demonstration of advanced applications of the thus created structured light fields in optical micromanipulation, utilising various geometries and unconventional light propagation properties. While most of the concepts developed are demonstrated with artificial microscopic reference particles, the work concludes with a comprehensive demonstration of optical control and alignment of bacterial cells, and hierarchical supramolecular organisation utilising dedicated nanocontainer particles.