Optimal Control of Hybrid Vehicles

Optimal Control of Hybrid Vehicles
Author: Bram de Jager
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2013-04-05
Genre: Technology & Engineering
ISBN: 1447150767

Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on the maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Three case studies are included in the book: • a control strategy for a micro-hybrid power train; • experimental results obtained with a real-time strategy implemented in a hybrid electric truck; and • an analysis of the optimal component sizes for a hybrid power train. Optimal Control of Hybrid Vehicles will appeal to academic researchers and graduate students interested in hybrid vehicle control or in the applications of optimal control. Practitioners working in the design of control systems for the automotive industry will also find the ideas propounded in this book of interest.

Hybrid Systems, Optimal Control and Hybrid Vehicles

Hybrid Systems, Optimal Control and Hybrid Vehicles
Author: Thomas J. Böhme
Publisher: Springer
Total Pages: 549
Release: 2017-02-01
Genre: Technology & Engineering
ISBN: 3319513176

This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering problems of growing complexity in the field of hybrid vehicles. Important topics of real relevance rarely found in text books and research publications—switching costs, sensitivity of discrete decisions and there impact on fuel savings, etc.—are discussed and supported with practical applications. These demonstrate the contribution of optimal hybrid control in predictive energy management, advanced powertrain calibration, and the optimization of vehicle configuration with respect to fuel economy, lowest emissions and smoothest drivability. Numerical issues such as computing resources, simplifications and stability are treated to enable readers to assess such complex systems. To help industrial engineers and managers with project decision-making, solutions for many important problems in hybrid vehicle control are provided in terms of requirements, benefits and risks.

Hybrid Electric Vehicles

Hybrid Electric Vehicles
Author: Simona Onori
Publisher: Springer
Total Pages: 121
Release: 2015-12-16
Genre: Technology & Engineering
ISBN: 1447167813

This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles
Author: Mehrdad Ehsani
Publisher: CRC Press
Total Pages: 546
Release: 2018-02-02
Genre: Technology & Engineering
ISBN: 0429998244

"This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.

Vehicle Propulsion Systems

Vehicle Propulsion Systems
Author: Lino Guzzella
Publisher: Springer Science & Business Media
Total Pages: 345
Release: 2007-09-21
Genre: Technology & Engineering
ISBN: 3540746927

The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.

Hybrid Electric Vehicle System Modeling and Control

Hybrid Electric Vehicle System Modeling and Control
Author: Wei Liu
Publisher: John Wiley & Sons
Total Pages: 584
Release: 2017-04-17
Genre: Technology & Engineering
ISBN: 1119279321

This new edition includes approximately 30% new materials covering the following information that has been added to this important work: extends the contents on Li-ion batteries detailing the positive and negative electrodes and characteristics and other components including binder, electrolyte, separator and foils, and the structure of Li-ion battery cell. Nickel-cadmium batteries are deleted. adds a new section presenting the modelling of multi-mode electrically variable transmission, which gradually became the main structure of the hybrid power-train during the last 5 years. newly added chapter on noise and vibration of hybrid vehicles introduces the basics of vibration and noise issues associated with power-train, driveline and vehicle vibrations, and addresses control solutions to reduce the noise and vibration levels. Chapter 10 (chapter 9 of the first edition) is extended by presenting EPA and UN newly required test drive schedules and test procedures for hybrid electric mileage calculation for window sticker considerations. In addition to the above major changes in this second edition, adaptive charging sustaining point determination method is presented to have a plug-in hybrid electric vehicle with optimum performance.

Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles

Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles
Author: Chitra A.
Publisher: John Wiley & Sons
Total Pages: 288
Release: 2020-07-21
Genre: Computers
ISBN: 1119681901

Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.

Modeling and Control of Hybrid Propulsion System for Ground Vehicles

Modeling and Control of Hybrid Propulsion System for Ground Vehicles
Author: Yuan Zou
Publisher: Springer
Total Pages: 331
Release: 2018-07-02
Genre: Technology & Engineering
ISBN: 3662536730

This book focuses on the systematic design of architectures, parameters and control of typical hybrid propulsion systems for wheeled and tracked vehicles based on a combination of theoretical research and engineering practice. Adopting a mechatronic system dynamics perspective, principles and methods from the fields of optimal control and system optimization are applied in order to analyze the hybrid propulsion configuration and controller design. Case investigations for typical hybrid propulsion systems of wheeled and tracked ground vehicles are also provided.

Predictive Control for Linear and Hybrid Systems

Predictive Control for Linear and Hybrid Systems
Author: Francesco Borrelli
Publisher: Cambridge University Press
Total Pages: 447
Release: 2017-06-22
Genre: Mathematics
ISBN: 1107016886

With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).