Author | : J. Thanh Van Tran |
Publisher | : Atlantica Séguier Frontières |
Total Pages | : 540 |
Release | : 1994 |
Genre | : Astrophysics |
ISBN | : 9782863321614 |
Author | : J. Thanh Van Tran |
Publisher | : Atlantica Séguier Frontières |
Total Pages | : 540 |
Release | : 1994 |
Genre | : Astrophysics |
ISBN | : 9782863321614 |
Author | : Lars Bergström |
Publisher | : Springer Science & Business Media |
Total Pages | : 375 |
Release | : 2006-05-26 |
Genre | : Science |
ISBN | : 3540329242 |
Beginning with basic facts about the observable universe, this book reviews the complete range of topics that make up a degree course in cosmology and particle astrophysics. The book is self-contained - no specialised knowledge is required on the part of the reader, apart from undergraduate math and physics. This paperback edition targets students of physics, astrophysics and cosmology from advanced undergraduate to early graduate level.
Author | : M. Coleman Miller |
Publisher | : |
Total Pages | : 0 |
Release | : 2021 |
Genre | : Gravitational waves |
ISBN | : 9780750330503 |
The direct detection of gravitational waves in 2015 has initiated a new era of gravitational wave astronomy, which has already paid remarkable dividends in our understanding of astrophysics and gravitational physics. Aimed at advanced undergraduates and graduate students, this book introduces gravitational waves and its many applications to cosmology, nuclear physics, astrophysics and theoretical physics.
Author | : Norman K. Glendenning |
Publisher | : Springer Science & Business Media |
Total Pages | : 402 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1468404911 |
A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
Author | : Gaetano Lambiase |
Publisher | : |
Total Pages | : 0 |
Release | : 2021 |
Genre | : |
ISBN | : 9783030847722 |
This book seeks to present a new way of thinking about the interaction of gravitational fields with quantum systems. Despite the massive amounts of research and experimentation, the myriad meetings, seminars and conferences, all of the articles, treatises and books, and the seemingly endless theorization, quantization and just plain speculation that have been engaged in regarding our evolving understanding of the quantum world, that world remains an enigma, even to the experts. The usefulness of general relativity in this regard has proven to be imperfect at best, but there is a new approach. We do not simply have to accept the limitations of Einstein's most celebrated theorem in regard to quantum theory; we can also embrace them, and thereby utilize them, to reveal new facts about the behavior of quantum systems within inertial and gravitational fields, and therefore about the very structure of space-time at the quantum level. By taking existing knowledge of the essential functionality of spin (along with the careful identification of the omnipresent inertial effects) and applying it to the quantum world, the book gives the reader a much clearer picture of the difference between the classical and quantum behaviors of a particle, shows that Einstein's ideas may not be as incompatible within this realm as many have come to believe, sparks new revelations of the way in which gravity affects quantum systems and brings a new level of efficiency-quantum efficiency, if you will-to the study of gravitational theory.
Author | : Alessandro De Angelis |
Publisher | : Springer |
Total Pages | : 755 |
Release | : 2018-06-19 |
Genre | : Science |
ISBN | : 3319781812 |
This book introduces particle physics, astrophysics and cosmology. Starting from an experimental perspective, it provides a unified view of these fields that reflects the very rapid advances being made. This new edition has a number of improvements and has been updated to describe the recent discovery of gravitational waves and astrophysical neutrinos, which started the new era of multimessenger astrophysics; it also includes new results on the Higgs particle. Astroparticle and particle physics share a common problem: we still don’t have a description of the main ingredients of the Universe from the point of view of its energy budget. Addressing these fascinating issues, and offering a balanced introduction to particle and astroparticle physics that requires only a basic understanding of quantum and classical physics, this book is a valuable resource, particularly for advanced undergraduate students and for those embarking on graduate courses. It includes exercises that offer readers practical insights. It can be used equally well as a self-study book, a reference and a textbook.
Author | : Michael V Berry |
Publisher | : CRC Press |
Total Pages | : 194 |
Release | : 1989-01-01 |
Genre | : Science |
ISBN | : 9780852740378 |
General relativity and quantum mechanics have become the two central pillars of theoretical physics. Moreover, general relativity has important applications in astrophysics and high-energy particle physics. Covering the fundamentals of the subject, Principles of Cosmology and Gravitation describes the universe as revealed by observations and presents a theoretical framework to enable important cosmological formulae to be derived and numerical calculations performed. Avoiding elaborate formal discussions, the book presents a practical approach that focuses on the general theory of relativity. It examines different evolutionary models and the gravitational effects of massive bodies. The book also includes a large number of worked examples and problems, half with solutions.
Author | : Thomas K. Gaisser |
Publisher | : Cambridge University Press |
Total Pages | : 302 |
Release | : 1990 |
Genre | : Science |
ISBN | : 9780521339315 |
Over recent years there has been marked growth in interest in the study of techniques of cosmic ray physics by astrophysicists and particle physicists. Cosmic radiation is important for the astrophysicist because in the farther reaches of the universe. For particle physicists, it provides the opportunity to study neutrinos and very high energy particles of galactic origin. More importantly, cosmic rays constitue the background, and in some cases possibly the signal, for the more exotic unconfirmed hypothesized particles such as monopoles and sparticles. Concentrating on the highest energy cosmic rays, this book describes where they originate, acquire energy, and interact, in accreting neutron stars, supernova remnants, in large-scale shock waves. It also describes their interactions in the atmosphere and in the earth, how they are studied in surface and very large underground detectors, and what they tell us.
Author | : E. Bellotti |
Publisher | : IOS Press |
Total Pages | : 321 |
Release | : 2003-12-08 |
Genre | : Science |
ISBN | : 1614990085 |
Neutrino physics contributed in an fundamental way to the progress of science, opening important windows of knowledge in elementary particle physics, as well in astrophysics and cosmology. Substantial experimental efforts are presently dedicated to improve our knowledge on neutrino properties as, in fact, we don't know yet some of the basic ones. Although very significant steps forward have been done, neutrino masses and mixings still remain largely unknown and constitute an important field for future research. Are neutrinos Majorana or Dirac particles? Have they a magnetic moment? Historically, studies on weak processes and, therefore, on neutrino physics, provided first the Fermi theory of weak interactions and then the V-A theory. Finally, the observation of weak neutral currents provided the first experimental evidence for unification of weak and electromagnetic interactions by the so called "Standard Model' of elementary particles. In addition to the results obtained from the measurement of the solar neutrino flux, the study of atmospheric neutrinos strongly supports the hypothesis of neutrino oscillation among different flavours. At the same time, the detection of neutrinos emitted by our Sun gave an important confirmation that the Sun produces energy via a chain of nuclear reactions; in particular in our Sun a specific cycle - the hydrogen cycle - is responsible for practically all the produced energy.