Quantum Magnetic Resonance Imaging Diagnostics of Human Brain Disorders

Quantum Magnetic Resonance Imaging Diagnostics of Human Brain Disorders
Author: Madan M Kaila
Publisher: Elsevier
Total Pages: 517
Release: 2010-06-21
Genre: Science
ISBN: 0123847125

Magnetic resonance imaging (MRI) is a medical imaging technique used to visualize detailed internal structure of the body. This book discusses the recent developments in the field of MRI and its application to the diagnosis of human brain disorders. In addition, it reviews the newly emerging concepts and technology, based on the multi-coherence imaging (MQCI). It explains how computer packages can be used to generate images in diseased states and compare them to in vivo results. This will help improve the diagnosis of brain disorders based on the real-time events happening on atomic and molecular quantum levels. This is important since quantum-based MRI would enable clinicians to detect brain tumors at the very early stages. - Uses practical examples to explain the techniques - making it easier to understand the concepts - Uses diagrams to explain the physics behind the technique - avoiding the use of complicated mathematical formulae

Molecular Imaging of the Brain

Molecular Imaging of the Brain
Author: M. M. Kaila
Publisher: Springer Science & Business Media
Total Pages: 430
Release: 2012-09-20
Genre: Technology & Engineering
ISBN: 3642303013

This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.

Neuroimaging and Neurophysiology in Psychiatry

Neuroimaging and Neurophysiology in Psychiatry
Author: David Linden
Publisher: Oxford University Press
Total Pages: 161
Release: 2016
Genre: Medical
ISBN: 0198739605

Neuroimaging and Neurophysiology in Psychiatry is an invaluable guide through the methods and applications of neuroimaging and neurophysiology.

MRI

MRI
Author: Brian M. Dale
Publisher: John Wiley & Sons
Total Pages: 246
Release: 2015-08-06
Genre: Medical
ISBN: 1119013038

This fifth edition of the most accessible introduction to MRI principles and applications from renowned teachers in the field provides an understandable yet comprehensive update. Accessible introductory guide from renowned teachers in the field Provides a concise yet thorough introduction for MRI focusing on fundamental physics, pulse sequences, and clinical applications without presenting advanced math Takes a practical approach, including up-to-date protocols, and supports technical concepts with thorough explanations and illustrations Highlights sections that are directly relevant to radiology board exams Presents new information on the latest scan techniques and applications including 3 Tesla whole body scanners, safety issues, and the nephrotoxic effects of gadolinium-based contrast media

Quantitative Magnetic Resonance Imaging

Quantitative Magnetic Resonance Imaging
Author: Nicole Seiberlich
Publisher: Academic Press
Total Pages: 1094
Release: 2020-11-18
Genre: Computers
ISBN: 0128170581

Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Author: Erik R. Ranschaert
Publisher: Springer
Total Pages: 369
Release: 2019-01-29
Genre: Medical
ISBN: 3319948784

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Chemical Exchange Saturation Transfer Imaging

Chemical Exchange Saturation Transfer Imaging
Author: Michael T. McMahon
Publisher: CRC Press
Total Pages: 463
Release: 2017-01-12
Genre: Medical
ISBN: 1315340755

This is the first textbook dedicated to CEST imaging and covers the fundamental principles of saturation transfer, key features of CEST agents that enable the production of imaging contrast, and practical aspects of preparing image-acquisition and post-processing schemes suited for in vivo applications. CEST is a powerful MRI contrast mechanism with unique features, and the rapid expansion it has seen over the past 15 years since its original discovery in 2000 has created a need for a graduate-level handbook describing all aspects of pre-clinical, translational, and clinical CEST imaging. The book provides an illustrated historical perspective by leaders at the five key sites who developed CEST imaging, from the initial saturation transfer NMR experiments performed in the 1960s in Stockholm, Sweden, described by Sture Forsén, to the work on integrating the basic principles of CEST into imaging by Robert Balaban, Dean Sherry, Silvio Aime, and Peter van Zijl in the United States and Italy. The editors, Drs. Michael T. McMahon, Assaf A. Gilad, Jeff W. M. Bulte, and Peter C. M. van Zijl, have been pioneers developing this field at the Johns Hopkins University School of Medicine and the Kennedy Krieger Institute including contributions to Nature Medicine, Nature Biotechnology, Nature Materials, and the Proceedings of the National Academy of Sciences. As recognition for their initial development of the field, Drs. van Zijl and Balaban were awarded the Laukien Prize in April 2016, established in 1999 to honor the memory of Professor Gunther Laukien, a co-founder of Bruker Biospin GmbH.

Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System

Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 74
Release: 2011-08-05
Genre: Medical
ISBN: 0309212219

Glutamate is the most pervasive neurotransmitter in the central nervous system (CNS). Despite this fact, no validated biological markers, or biomarkers, currently exist for measuring glutamate pathology in CNS disorders or injuries. Glutamate dysfunction has been associated with an extensive range of nervous system diseases and disorders. Problems with how the neurotransmitter glutamate functions in the brain have been linked to a wide variety of disorders, including schizophrenia, Alzheimer's, substance abuse, and traumatic brain injury. These conditions are widespread, affecting a large portion of the United States population, and remain difficult to treat. Efforts to understand, treat, and prevent glutamate-related disorders can be aided by the identification of valid biomarkers. The Institute of Medicine's Forum on Neuroscience and Nervous System Disorders held a workshop on June 21-22, 2010, to explore ways to accelerate the development, validation, and implementation of such biomarkers. Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary investigates promising current and emerging technologies, and outlines strategies to procure resources and tools to advance drug development for associated nervous system disorders. Moreover, this report highlights presentations by expert panelists, and the open panel discussions that occurred during the workshop.

In Vivo NMR Spectroscopy

In Vivo NMR Spectroscopy
Author: Robin A. de Graaf
Publisher: John Wiley & Sons
Total Pages: 584
Release: 2019-03-11
Genre: Science
ISBN: 1119382548

Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques. The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses. Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists Features more experimental methodology than the previous edition End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations Designed to be used in conjunction with a teaching course on the subject In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.