Random Graphs and Complex Networks

Random Graphs and Complex Networks
Author: Remco van der Hofstad
Publisher: Cambridge University Press
Total Pages: 341
Release: 2017
Genre: Computers
ISBN: 110717287X

This classroom-tested text is the definitive introduction to the mathematics of network science, featuring examples and numerous exercises.

Random Graph Dynamics

Random Graph Dynamics
Author: Rick Durrett
Publisher: Cambridge University Press
Total Pages: 203
Release: 2010-05-31
Genre: Mathematics
ISBN: 1139460889

The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.

Introduction to Random Graphs

Introduction to Random Graphs
Author: Alan Frieze
Publisher: Cambridge University Press
Total Pages: 483
Release: 2016
Genre: Mathematics
ISBN: 1107118506

The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.

Graph Theory and Complex Networks

Graph Theory and Complex Networks
Author: Maarten van Steen
Publisher: Maarten Van Steen
Total Pages: 285
Release: 2010
Genre: Graph theory
ISBN: 9789081540612

This book aims to explain the basics of graph theory that are needed at an introductory level for students in computer or information sciences. To motivate students and to show that even these basic notions can be extremely useful, the book also aims to provide an introduction to the modern field of network science. Mathematics is often unnecessarily difficult for students, at times even intimidating. For this reason, explicit attention is paid in the first chapters to mathematical notations and proof techniques, emphasizing that the notations form the biggest obstacle, not the mathematical concepts themselves. This approach allows to gradually prepare students for using tools that are necessary to put graph theory to work: complex networks. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Again, everything is discussed at an elementary level, but such that in the end students indeed have the feeling that they: 1.Have learned how to read and understand the basic mathematics related to graph theory. 2.Understand how basic graph theory can be applied to optimization problems such as routing in communication networks. 3.Know a bit more about this sometimes mystical field of small worlds and random networks. There is an accompanying web site www.distributed-systems.net/gtcn from where supplementary material can be obtained, including exercises, Mathematica notebooks, data for analyzing graphs, and generators for various complex networks.

Complex Graphs and Networks

Complex Graphs and Networks
Author: Fan R. K. Chung
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2006
Genre: Computers
ISBN: 0821836579

Graph theory is a primary tool for detecting numerous hidden structures in various information networks, including Internet graphs, social networks, biological networks, or any graph representing relations in massive data sets. This book explains the universal and ubiquitous coherence in the structure of these realistic but complex networks.

Handbook of Graphs and Networks

Handbook of Graphs and Networks
Author: Stefan Bornholdt
Publisher: John Wiley & Sons
Total Pages: 417
Release: 2006-03-06
Genre: Science
ISBN: 3527606335

Complex interacting networks are observed in systems from such diverse areas as physics, biology, economics, ecology, and computer science. For example, economic or social interactions often organize themselves in complex network structures. Similar phenomena are observed in traffic flow and in communication networks as the internet. In current problems of the Biosciences, prominent examples are protein networks in the living cell, as well as molecular networks in the genome. On larger scales one finds networks of cells as in neural networks, up to the scale of organisms in ecological food webs. This book defines the field of complex interacting networks in its infancy and presents the dynamics of networks and their structure as a key concept across disciplines. The contributions present common underlying principles of network dynamics and their theoretical description and are of interest to specialists as well as to the non-specialized reader looking for an introduction to this new exciting field. Theoretical concepts include modeling networks as dynamical systems with numerical methods and new graph theoretical methods, but also focus on networks that change their topology as in morphogenesis and self-organization. The authors offer concepts to model network structures and dynamics, focussing on approaches applicable across disciplines.

Generating Random Networks and Graphs

Generating Random Networks and Graphs
Author: Anthony C. C. Coolen
Publisher: Oxford University Press
Total Pages: 325
Release: 2017
Genre: Computers
ISBN: 0198709897

This book describes how to correctly and efficiently generate random networks based on certain constraints. Being able to test a hypothesis against a properly specified control case is at the heart of the 'scientific method'.

Random Walks and Diffusions on Graphs and Databases

Random Walks and Diffusions on Graphs and Databases
Author: Philipp Blanchard
Publisher: Springer Science & Business Media
Total Pages: 271
Release: 2011-05-26
Genre: Science
ISBN: 364219592X

Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.

Mining Complex Networks

Mining Complex Networks
Author: Bogumil Kaminski
Publisher: CRC Press
Total Pages: 228
Release: 2021-12-14
Genre: Mathematics
ISBN: 1000515907

This book concentrates on mining networks, a subfield within data science. Data science uses scientific and computational tools to extract valuable knowledge from large data sets. Once data is processed and cleaned, it is analyzed and presented to support decision-making processes. Data science and machine learning tools have become widely used in companies of all sizes. Networks are often large-scale, decentralized, and evolve dynamically over time. Mining complex networks aim to understand the principles governing the organization and the behavior of such networks is crucial for a broad range of fields of study. Here are a few selected typical applications of mining networks: Community detection (which users on some social media platforms are close friends). Link prediction (who is likely to connect to whom on such platforms). Node attribute prediction (what advertisement should be shown to a given user of a particular platform to match their interests). Influential node detection (which social media users would be the best ambassadors of a specific product). This textbook is suitable for an upper-year undergraduate course or a graduate course in programs such as data science, mathematics, computer science, business, engineering, physics, statistics, and social science. This book can be successfully used by all enthusiasts of data science at various levels of sophistication to expand their knowledge or consider changing their career path. Jupiter notebooks (in Python and Julia) accompany the book and can be accessed on https://www.ryerson.ca/mining-complex-networks/. These not only contain all the experiments presented in the book, but also include additional material. Bogumił Kamiński is the Chairman of the Scientific Council for the Discipline of Economics and Finance at SGH Warsaw School of Economics. He is also an Adjunct Professor at the Data Science Laboratory at Ryerson University. Bogumił is an expert in applications of mathematical modeling to solving complex real-life problems. He is also a substantial open-source contributor to the development of the Julia language and its package ecosystem. Paweł Prałat is a Professor of Mathematics in Ryerson University, whose main research interests are in random graph theory, especially in modeling and mining complex networks. He is the Director of Fields-CQAM Lab on Computational Methods in Industrial Mathematics in The Fields Institute for Research in Mathematical Sciences and has pursued collaborations with various industry partners as well as the Government of Canada. He has written over 170 papers and three books with 130 plus collaborators. François Théberge holds a B.Sc. degree in applied mathematics from the University of Ottawa, a M.Sc. in telecommunications from INRS and a PhD in electrical engineering from McGill University. He has been employed by the Government of Canada since 1996 where he was involved in the creation of the data science team as well as the research group now known as the Tutte Institute for Mathematics and Computing. He also holds an adjunct professorial position in the Department of Mathematics and Statistics at the University of Ottawa. His current interests include relational-data mining and deep learning.