Recent Advances in Mathematical and Statistical Methods

Recent Advances in Mathematical and Statistical Methods
Author: D. Marc Kilgour
Publisher: Springer
Total Pages: 622
Release: 2018-11-04
Genre: Computers
ISBN: 331999719X

This book focuses on the recent development of methodologies and computation methods in mathematical and statistical modelling, computational science and applied mathematics. It emphasizes the development of theories and applications, and promotes interdisciplinary endeavour among mathematicians, statisticians, scientists, engineers and researchers from other disciplines. The book provides ideas, methods and tools in mathematical and statistical modelling that have been developed for a wide range of research fields, including medical, health sciences, biology, environmental science, engineering, physics and chemistry, finance, economics and social sciences. It presents original results addressing real-world problems. The contributions are products of a highly successful meeting held in August 2017 on the main campus of Wilfrid Laurier University, in Waterloo, Canada, the International Conference on Applied Mathematics, Modeling and Computational Science (AMMCS-2017). They make this book a valuable resource for readers interested not only in a broader overview of the methods, ideas and tools in mathematical and statistical approaches, but also in how they can attain valuable insights into problems arising in other disciplines.

Recent Developments in Mathematical, Statistical and Computational Sciences

Recent Developments in Mathematical, Statistical and Computational Sciences
Author: D. Marc Kilgour
Publisher: Springer
Total Pages: 0
Release: 2022-08-31
Genre: Mathematics
ISBN: 9783030635930

This book constitutes an up-to-date account of principles, methods, and tools for mathematical and statistical modelling in a wide range of research fields, including medicine, health sciences, biology, environmental science, engineering, physics, chemistry, computation, finance, economics, and social sciences. It presents original solutions to real-world problems, emphasizes the coordinated development of theories and applications, and promotes interdisciplinary collaboration among mathematicians, statisticians, and researchers in other disciplines. Based on a highly successful meeting, the International Conference on Applied Mathematics, Modeling and Computational Science, AMMCS 2019, held from August 18 to 23, 2019, on the main campus of Wilfrid Laurier University, Waterloo, Canada, the contributions are the results of submissions from the conference participants. They provide readers with a broader view of the methods, ideas and tools used in mathematical, statistical and computational sciences.

Advances in Statistical Methodologies and Their Application to Real Problems

Advances in Statistical Methodologies and Their Application to Real Problems
Author: Tsukasa Hokimoto
Publisher: BoD – Books on Demand
Total Pages: 327
Release: 2017-04-26
Genre: Mathematics
ISBN: 953513101X

In recent years, statistical techniques and methods for data analysis have advanced significantly in a wide range of research areas. These developments enable researchers to analyze increasingly large datasets with more flexibility and also more accurately estimate and evaluate the phenomena they study. We recognize the value of recent advances in data analysis techniques in many different research fields. However, we also note that awareness of these different statistical and probabilistic approaches may vary, owing to differences in the datasets typical of different research fields. This book provides a cross-disciplinary forum for exploring the variety of new data analysis techniques emerging from different fields.

Mathematical and Statistical Models and Methods in Reliability

Mathematical and Statistical Models and Methods in Reliability
Author: V.V. Rykov
Publisher: Springer Science & Business Media
Total Pages: 465
Release: 2010-11-02
Genre: Technology & Engineering
ISBN: 0817649719

The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.

Understanding Advanced Statistical Methods

Understanding Advanced Statistical Methods
Author: Peter Westfall
Publisher: CRC Press
Total Pages: 572
Release: 2013-04-09
Genre: Mathematics
ISBN: 1466512105

Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.

Some Recent Advances In Mathematics And Statistics - Proceedings Of Statistics 2011 Canada/imst 2011-fim Xx

Some Recent Advances In Mathematics And Statistics - Proceedings Of Statistics 2011 Canada/imst 2011-fim Xx
Author: Yogendra P Chaubey
Publisher: World Scientific
Total Pages: 276
Release: 2013-03-14
Genre: Mathematics
ISBN: 9814417998

This volume consists of a series of research papers presented at the conference Statistics 2011 Canada: 5th Canadian Conference in Applied Statistics held together with the 20th conference of the Forum for Interdisciplinary Mathematics titled, “Interdisciplinary Mathematical & Statistical Techniques”. These papers cover a wide range of topics from applications of Mathematics and Statistics such as Selection Bias in Surveys, Biomarker Discovery, Analysis of Earth Temperature, Supply Chain Management, Trimmed ANOVA, Zero-inflated Data, Non-Gaussian Time Series, and Stochastic Ordering; Classification, Nonparametric Test, and Jackknifed Ridge Estimator; Bayes Factor; Random Graphs and Error Correcting Codes; Meta Analysis; and National Health Plans and Risk Reduction through Supply Chain.The topics have been reviewed by experts in the field and the selected papers are expected to provide a topical resource on the subjects concerned.

Mathematical and Statistical Methods in Food Science and Technology

Mathematical and Statistical Methods in Food Science and Technology
Author: Daniel Granato
Publisher: John Wiley & Sons
Total Pages: 540
Release: 2014-03-03
Genre: Technology & Engineering
ISBN: 1118433688

Mathematical and Statistical Approaches in Food Science and Technology offers an accessible guide to applying statistical and mathematical technologies in the food science field whilst also addressing the theoretical foundations. Using clear examples and case-studies by way of practical illustration, the book is more than just a theoretical guide for non-statisticians, and may therefore be used by scientists, students and food industry professionals at different levels and with varying degrees of statistical skill.

Some Recent Advances in Mathematics and Statistics

Some Recent Advances in Mathematics and Statistics
Author: Yogendra P. Chaubey
Publisher: World Scientific
Total Pages: 276
Release: 2013
Genre: Business & Economics
ISBN: 981441798X

This volume consists of a series of research papers presented at the conference Statistics 2011 Canada: 5th Canadian Conference in Applied Statistics held together with the 20th conference of the Forum for Interdisciplinary Mathematics titled, OC Interdisciplinary Mathematical & Statistical TechniquesOCO. These papers cover a wide range of topics from applications of Mathematics and Statistics such as Selection Bias in Surveys, Biomarker Discovery, Analysis of Earth Temperature, Supply Chain Management, Trimmed ANOVA, Zero-inflated Data, Non-Gaussian Time Series, and Stochastic Ordering; Classification, Nonparametric Test, and Jackknifed Ridge Estimator; Bayes Factor; Random Graphs and Error Correcting Codes; Meta Analysis; and National Health Plans and Risk Reduction through Supply Chain.The topics have been reviewed by experts in the field and the selected papers are expected to provide a topical resource on the subjects concerned.

Advanced Statistical Methods in Data Science

Advanced Statistical Methods in Data Science
Author: Ding-Geng Chen
Publisher: Springer
Total Pages: 229
Release: 2016-11-30
Genre: Mathematics
ISBN: 9811025940

This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences.