Semiconductor Modeling Techniques

Semiconductor Modeling Techniques
Author: Xavier Marie
Publisher: Springer Science & Business Media
Total Pages: 267
Release: 2012-06-26
Genre: Technology & Engineering
ISBN: 3642275125

This book describes the key theoretical techniques for semiconductor research to quantitatively calculate and simulate the properties. It presents particular techniques to study novel semiconductor materials, such as 2D heterostructures, quantum wires, quantum dots and nitrogen containing III-V alloys. The book is aimed primarily at newcomers working in the field of semiconductor physics to give guidance in theory and experiment. The theoretical techniques for electronic and optoelectronic devices are explained in detail.

Introduction to Semiconductor Device Modelling

Introduction to Semiconductor Device Modelling
Author: Christopher M. Snowden
Publisher: World Scientific
Total Pages: 242
Release: 1998
Genre: Science
ISBN: 9789810236939

This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.

Semiconductor Modeling:

Semiconductor Modeling:
Author: Roy Leventhal
Publisher: Springer Science & Business Media
Total Pages: 769
Release: 2007-01-10
Genre: Technology & Engineering
ISBN: 0387241604

Discusses process variation, model accuracy, design flow and many other practical engineering, reliability and manufacturing issues Gives a good overview for a person who is not an expert in modeling and simulation, enabling them to extract the necessary information to competently use modeling and simulation programs Written for engineering students and product design engineers

Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures
Author: Giovanni Agostini
Publisher: Elsevier
Total Pages: 501
Release: 2011-08-11
Genre: Science
ISBN: 0080558151

In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors

Compact Modeling

Compact Modeling
Author: Gennady Gildenblat
Publisher: Springer Science & Business Media
Total Pages: 531
Release: 2010-06-22
Genre: Technology & Engineering
ISBN: 9048186145

Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.

The Monte Carlo Method for Semiconductor Device Simulation

The Monte Carlo Method for Semiconductor Device Simulation
Author: Carlo Jacoboni
Publisher: Springer Science & Business Media
Total Pages: 382
Release: 1989-10-30
Genre: Technology & Engineering
ISBN: 9783211821107

This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.

Monte Carlo Simulation of Semiconductor Devices

Monte Carlo Simulation of Semiconductor Devices
Author: C. Moglestue
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2013-04-17
Genre: Computers
ISBN: 9401581339

Particle simulation of semiconductor devices is a rather new field which has started to catch the interest of the world's scientific community. It represents a time-continuous solution of Boltzmann's transport equation, or its quantum mechanical equivalent, and the field equation, without encountering the usual numerical problems associated with the direct solution. The technique is based on first physical principles by following in detail the transport histories of indi vidual particles and gives a profound insight into the physics of semiconductor devices. The method can be applied to devices of any geometrical complexity and material composition. It yields an accurate description of the device, which is not limited by the assumptions made behind the alternative drift diffusion and hydrodynamic models, which represent approximate solutions to the transport equation. While the development of the particle modelling technique has been hampered in the past by the cost of computer time, today this should not be held against using a method which gives a profound physical insight into individual devices and can be used to predict the properties of devices not yet manufactured. Employed in this way it can save the developer much time and large sums of money, both important considerations for the laboratory which wants to keep abreast of the field of device research. Applying it to al ready existing electronic components may lead to novel ideas for their improvement. The Monte Carlo particle simulation technique is applicable to microelectronic components of any arbitrary shape and complexity.

Power Integrity Modeling and Design for Semiconductors and Systems

Power Integrity Modeling and Design for Semiconductors and Systems
Author: Madhavan Swaminathan
Publisher: Pearson Education
Total Pages: 599
Release: 2007-11-19
Genre: Technology & Engineering
ISBN: 0132797178

The First Comprehensive, Example-Rich Guide to Power Integrity Modeling Professionals such as signal integrity engineers, package designers, and system architects need to thoroughly understand signal and power integrity issues in order to successfully design packages and boards for high speed systems. Now, for the first time, there's a complete guide to power integrity modeling: everything you need to know, from the basics through the state of the art. Using realistic case studies and downloadable software examples, two leading experts demonstrate today's best techniques for designing and modeling interconnects to efficiently distribute power and minimize noise. The authors carefully introduce the core concepts of power distribution design, systematically present and compare leading techniques for modeling noise, and link these techniques to specific applications. Their many examples range from the simplest (using analytical equations to compute power supply noise) through complex system-level applications. The authors Introduce power delivery network components, analysis, high-frequency measurement, and modeling requirements Thoroughly explain modeling of power/ground planes, including plane behavior, lumped modeling, distributed circuit-based approaches, and much more Offer in-depth coverage of simultaneous switching noise, including modeling for return currents using time- and frequency-domain analysis Introduce several leading time-domain simulation methods, such as macromodeling, and discuss their advantages and disadvantages Present the application of the modeling methods on several advanced case studies that include high-speed servers, high-speed differential signaling, chip package analysis, materials characterization, embedded decoupling capacitors, and electromagnetic bandgap structures This book's system-level focus and practical examples will make it indispensable for every student and professional concerned with power integrity, including electrical engineers, system designers, signal integrity engineers, and materials scientists. It will also be valuable to developers building software that helps to analyze high-speed systems.

Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization

Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization
Author: Richard Haight
Publisher: World Scientific
Total Pages: 346
Release: 2012
Genre: Science
ISBN: 9814322849

As we delve more deeply into the physics and chemistry of functional materials and processes, we are inexorably driven to the nanoscale. And nowhere is the development of instrumentation and associated techniques more important to scientific progress than in the area of nanoscience. The dramatic expansion of efforts to peer into nanoscale materials and processes has made it critical to capture and summarize the cutting-edge instrumentation and techniques that have become indispensable for scientific investigation in this arena. This Handbook is a key resource developed for scientists, engineers and advanced graduate students in which eminent scientists present the forefront of instrumentation and techniques for the study of structural, optical and electronic properties of semiconductor nanostructures.