Author | : Sasaki Chikara |
Publisher | : Birkhäuser |
Total Pages | : 272 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3034875215 |
Author | : Sasaki Chikara |
Publisher | : Birkhäuser |
Total Pages | : 272 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3034875215 |
Author | : Nicolas Rashevsky |
Publisher | : MIT Press (MA) |
Total Pages | : 232 |
Release | : 1968 |
Genre | : Mathematics |
ISBN | : |
Author | : W. Fulton |
Publisher | : Springer Science & Business Media |
Total Pages | : 483 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 3662024217 |
From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two cen turies, intersection theory has played a central role. Since its role in founda tional crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive his tory of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory. Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to devel op the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appen dices. Some of the examples, and a few of the later sections, require more spe cialized knowledge. The text is designed so that one who understands the con structions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should fa cilitate use as a reference.
Author | : Agustin Rayo |
Publisher | : MIT Press |
Total Pages | : 321 |
Release | : 2019-04-02 |
Genre | : Mathematics |
ISBN | : 0262039419 |
An introduction to awe-inspiring ideas at the brink of paradox: infinities of different sizes, time travel, probability and measure theory, and computability theory. This book introduces the reader to awe-inspiring issues at the intersection of philosophy and mathematics. It explores ideas at the brink of paradox: infinities of different sizes, time travel, probability and measure theory, computability theory, the Grandfather Paradox, Newcomb's Problem, the Principle of Countable Additivity. The goal is to present some exceptionally beautiful ideas in enough detail to enable readers to understand the ideas themselves (rather than watered-down approximations), but without supplying so much detail that they abandon the effort. The philosophical content requires a mind attuned to subtlety; the most demanding of the mathematical ideas require familiarity with college-level mathematics or mathematical proof. The book covers Cantor's revolutionary thinking about infinity, which leads to the result that some infinities are bigger than others; time travel and free will, decision theory, probability, and the Banach-Tarski Theorem, which states that it is possible to decompose a ball into a finite number of pieces and reassemble the pieces so as to get two balls that are each the same size as the original. Its investigation of computability theory leads to a proof of Gödel's Incompleteness Theorem, which yields the amazing result that arithmetic is so complex that no computer could be programmed to output every arithmetical truth and no falsehood. Each chapter is followed by an appendix with answers to exercises. A list of recommended reading points readers to more advanced discussions. The book is based on a popular course (and MOOC) taught by the author at MIT.
Author | : Kirsti Andersen |
Publisher | : Springer Science & Business Media |
Total Pages | : 837 |
Release | : 2008-11-23 |
Genre | : Mathematics |
ISBN | : 0387489460 |
This review of literature on perspective constructions from the Renaissance through the 18th century covers 175 authors, emphasizing Peiro della Francesca, Guidobaldo del Monte, Simon Stevin, Brook Taylor, and Johann Heinrich. It treats such topics as the various methods of constructing perspective, the development of theories underlying the constructions, and the communication between mathematicians and artisans in these developments.
Author | : Lynn Gamwell |
Publisher | : Princeton University Press |
Total Pages | : 576 |
Release | : 2016 |
Genre | : Art |
ISBN | : 0691165289 |
This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.
Author | : Peter L. Duren |
Publisher | : Springer Science & Business |
Total Pages | : 692 |
Release | : 1988 |
Genre | : Mathematics |
ISBN | : 9780821801369 |
Part of the A Century of Mathematics in America collection, this book contains articles that describe the mathematics and the mathematical personalities in some of the nations' prominent departments: Johns Hopkins, Clark, Columbia, MIT, Michigan, Texas, and the Institute for Advanced Study.
Author | : Snezana Lawrence |
Publisher | : Oxford University Press, USA |
Total Pages | : 305 |
Release | : 2015 |
Genre | : Mathematics |
ISBN | : 0198703058 |
This is a book on the relationship between mathematics and religious beliefs. This book shows that, throughout scientific history, mathematics has been used to make sense of the 'big' questions of life, and that religious beliefs sometimes drove mathematicians to do mathematics to help them make sense of the world
Author | : Terry A. McKee |
Publisher | : SIAM |
Total Pages | : 213 |
Release | : 1999-01-01 |
Genre | : Mathematics |
ISBN | : 9780898719802 |
Finally there is a book that presents real applications of graph theory in a unified format. This book is the only source for an extended, concentrated focus on the theory and techniques common to various types of intersection graphs. It is a concise treatment of the aspects of intersection graphs that interconnect many standard concepts and form the foundation of a surprising array of applications to biology, computing, psychology, matrices, and statistics.