Topics in the Theory of Numbers

Topics in the Theory of Numbers
Author: Janos Suranyi
Publisher: Springer Science & Business Media
Total Pages: 322
Release: 2003-01-14
Genre: Mathematics
ISBN: 9780387953205

Number theory, the branch of mathematics that studies the properties of the integers, is a repository of interesting and quite varied problems, sometimes impossibly difficult ones. In this book, the authors have gathered together a collection of problems from various topics in number theory that they find beautiful, intriguing, and from a certain point of view instructive.

Topics from the Theory of Numbers

Topics from the Theory of Numbers
Author: Emil Grosswald
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2010-02-23
Genre: Mathematics
ISBN: 0817648380

Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate.

数论导引

数论导引
Author:
Publisher:
Total Pages: 435
Release: 2007
Genre: Number theory
ISBN: 9787115156112

本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。

Introduction to Number Theory

Introduction to Number Theory
Author: Anthony Vazzana
Publisher: CRC Press
Total Pages: 530
Release: 2007-10-30
Genre: Computers
ISBN: 1584889381

One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi

Advanced Topics in Computational Number Theory

Advanced Topics in Computational Number Theory
Author: Henri Cohen
Publisher: Springer Science & Business Media
Total Pages: 591
Release: 2012-10-29
Genre: Mathematics
ISBN: 1441984895

Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.

Topics in Analytic Number Theory

Topics in Analytic Number Theory
Author: Hans Rademacher
Publisher: Springer Science & Business Media
Total Pages: 333
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642806155

At the time of Professor Rademacher's death early in 1969, there was available a complete manuscript of the present work. The editors had only to supply a few bibliographical references and to correct a few misprints and errors. No substantive changes were made in the manu script except in one or two places where references to additional material appeared; since this material was not found in Rademacher's papers, these references were deleted. The editors are grateful to Springer-Verlag for their helpfulness and courtesy. Rademacher started work on the present volume no later than 1944; he was still working on it at the inception of his final illness. It represents the parts of analytic number theory that were of greatest interest to him. The editors, his students, offer this work as homage to the memory of a great man to whom they, in common with all number theorists, owe a deep and lasting debt. E. Grosswald Temple University, Philadelphia, PA 19122, U.S.A. J. Lehner University of Pittsburgh, Pittsburgh, PA 15213 and National Bureau of Standards, Washington, DC 20234, U.S.A. M. Newman National Bureau of Standards, Washington, DC 20234, U.S.A. Contents I. Analytic tools Chapter 1. Bernoulli polynomials and Bernoulli numbers ....... . 1 1. The binomial coefficients ..................................... . 1 2. The Bernoulli polynomials .................................... . 4 3. Zeros of the Bernoulli polynomials ............................. . 7 4. The Bernoulli numbers ....................................... . 9 5. The von Staudt-Clausen theorem .............................. . 10 6. A multiplication formula for the Bernoulli polynomials ........... .

Fundamentals of Number Theory

Fundamentals of Number Theory
Author: William J. LeVeque
Publisher: Courier Corporation
Total Pages: 292
Release: 2014-01-05
Genre: Mathematics
ISBN: 0486141500

This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.

An Illustrated Theory of Numbers

An Illustrated Theory of Numbers
Author: Martin H. Weissman
Publisher: American Mathematical Soc.
Total Pages: 341
Release: 2020-09-15
Genre: Education
ISBN: 1470463717

News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.

An Introduction to the Theory of Numbers

An Introduction to the Theory of Numbers
Author: Leo Moser
Publisher: The Trillia Group
Total Pages: 95
Release: 2004
Genre: Mathematics
ISBN: 1931705011

"This book, which presupposes familiarity only with the most elementary concepts of arithmetic (divisibility properties, greatest common divisor, etc.), is an expanded version of a series of lectures for graduate students on elementary number theory. Topics include: Compositions and Partitions; Arithmetic Functions; Distribution of Primes; Irrational Numbers; Congruences; Diophantine Equations; Combinatorial Number Theory; and Geometry of Numbers. Three sections of problems (which include exercises as well as unsolved problems) complete the text."--Publisher's description