Topos Theory

Topos Theory
Author: P.T. Johnstone
Publisher: Courier Corporation
Total Pages: 401
Release: 2014-01-15
Genre: Mathematics
ISBN: 0486493369

Focusing on topos theory's integration of geometric and logical ideas into the foundations of mathematics and theoretical computer science, this volume explores internal category theory, topologies and sheaves, geometric morphisms, and other subjects. 1977 edition.

Higher Topos Theory

Higher Topos Theory
Author: Jacob Lurie
Publisher: Princeton University Press
Total Pages: 944
Release: 2009-07-26
Genre: Mathematics
ISBN: 0691140480

In 'Higher Topos Theory', Jacob Lurie presents the foundations of this theory using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.

The Topos of Music

The Topos of Music
Author: Guerino Mazzola
Publisher: Birkhäuser
Total Pages: 1310
Release: 2012-12-06
Genre: Mathematics
ISBN: 303488141X

With contributions by numerous experts

Sheaves in Geometry and Logic

Sheaves in Geometry and Logic
Author: Saunders Mac Lane
Publisher:
Total Pages: 627
Release: 1992
Genre: Algebraische Geometrie - Garbentheorie
ISBN: 9783540977100

An introduction to the theory of toposes which begins with illustrative examples and goes on to explain the underlying ideas of topology and sheaf theory as well as the general theory of elementary toposes and geometric morphisms and their relation to logic.

Sketches of an Elephant: A Topos Theory Compendium

Sketches of an Elephant: A Topos Theory Compendium
Author: P. T. Johnstone
Publisher: Oxford University Press
Total Pages: 836
Release: 2002-09-12
Genre: Computers
ISBN: 9780198515982

Topos Theory is a subject that stands at the junction of geometry, mathematical logic and theoretical computer science, and it derives much of its power from the interplay of ideas drawn from these different areas. Because of this, an account of topos theory which approaches the subject from one particular direction can only hope to give a partial picture; the aim of this compendium is to present as comprehensive an account as possible of all the main approaches and to thereby demonstrate the overall unity of the subject. The material is organized in such a way that readers interested in following a particular line of approach may do so by starting at an appropriate point in the text.

Model Theory and Topoi

Model Theory and Topoi
Author: F.W. Lawvere
Publisher: Springer
Total Pages: 352
Release: 2006-11-15
Genre: Mathematics
ISBN: 3540374957

A Collection of Lectures by Variuos Authors

A First Course in Topos Quantum Theory

A First Course in Topos Quantum Theory
Author: Cecilia Flori
Publisher: Springer
Total Pages: 452
Release: 2013-03-27
Genre: Science
ISBN: 364235713X

In the last five decades various attempts to formulate theories of quantum gravity have been made, but none has fully succeeded in becoming the quantum theory of gravity. One possible explanation for this failure might be the unresolved fundamental issues in quantum theory as it stands now. Indeed, most approaches to quantum gravity adopt standard quantum theory as their starting point, with the hope that the theory’s unresolved issues will get solved along the way. However, these fundamental issues may need to be solved before attempting to define a quantum theory of gravity. The present text adopts this point of view, addressing the following basic questions: What are the main conceptual issues in quantum theory? How can these issues be solved within a new theoretical framework of quantum theory? A possible way to overcome critical issues in present-day quantum physics – such as a priori assumptions about space and time that are not compatible with a theory of quantum gravity, and the impossibility of talking about systems without reference to an external observer – is through a reformulation of quantum theory in terms of a different mathematical framework called topos theory. This course-tested primer sets out to explain to graduate students and newcomers to the field alike, the reasons for choosing topos theory to resolve the above-mentioned issues and how it brings quantum physics back to looking more like a “neo-realist” classical physics theory again.

Toposes and Local Set Theories

Toposes and Local Set Theories
Author: John L. Bell
Publisher: Courier Corporation
Total Pages: 290
Release: 2008-01-01
Genre: Mathematics
ISBN: 0486462862

This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.

Theories, Sites, Toposes

Theories, Sites, Toposes
Author: Olivia Caramello
Publisher: Oxford University Press
Total Pages: 381
Release: 2018
Genre: Mathematics
ISBN: 019875891X

According to Grothendieck, the notion of topos is "the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures". It is what he had "conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an "essence" which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things". The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.