Ultra-High Temperature Ceramics

Ultra-High Temperature Ceramics
Author: William G. Fahrenholtz
Publisher: John Wiley & Sons
Total Pages: 601
Release: 2014-10-10
Genre: Technology & Engineering
ISBN: 111892441X

The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.

MAX Phases and Ultra-high Temperature Ceramics for Extreme Environments

MAX Phases and Ultra-high Temperature Ceramics for Extreme Environments
Author: It-Meng Low
Publisher: Engineering Science Reference
Total Pages: 0
Release: 2013
Genre: Ceramic-matrix composites
ISBN: 9781466640665

"This book investigates a new class of ultra-durable ceramic materials, which exhibit characteristics of both ceramics and metals, and will explore recent advances in the manufacturing of ceramic materials that improve their durability and other physical properties, enhancing their overall usability and cost-effectiveness"--

Handbook of Ceramic Composites

Handbook of Ceramic Composites
Author: Narottam P. Bansal
Publisher: Springer Science & Business Media
Total Pages: 547
Release: 2006-08-25
Genre: Technology & Engineering
ISBN: 0387239863

This valuable handbook has been compiled by internationally renowned researchers in the field. Each chapter is focused on a specific composite system or a class of composites, presenting a detailed description of processing, properties, and applications.

Ultra-High Temperature Materials II

Ultra-High Temperature Materials II
Author: Igor L. Shabalin
Publisher: Springer
Total Pages: 764
Release: 2019-04-24
Genre: Technology & Engineering
ISBN: 9402413022

This exhaustive work in three volumes and over 1300 pages provides a thorough treatment of ultra-high temperature materials with melting points over 2500 °C. The first volume focuses on Carbon and Refractory Metals, whilst the second and third are dedicated solely to Refractory compounds and the third to Refractory Alloys and Composites respectively. Topics included are physical (crystallographic, thermodynamic, thermo physical, electrical, optical, physico-mechanical, nuclear) and chemical (solid-state diffusion, interaction with chemical elements and compounds, interaction with gases, vapours and aqueous solutions) properties of the individual physico-chemical phases of carbon (graphite/graphene), refractory metals (W, Re, Os, Ta, Mo, Nb, Ir) and compounds (oxides, nitrides, carbides, borides, silicides) with melting points in this range. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The reader is provided with the full qualitative and quantitative assessment for the materials, which could be applied in various engineering devices and environmental conditions at ultra-high temperatures, on the basis of the latest updates in the field of physics, chemistry, materials science and engineering.

Advanced Multifunctional Lightweight Aerostructures

Advanced Multifunctional Lightweight Aerostructures
Author: Kamran Behdinan
Publisher: John Wiley & Sons
Total Pages: 256
Release: 2021-01-29
Genre: Technology & Engineering
ISBN: 1119756723

Offers a review of the newest methodologies for the characterization and modelling of lightweight materials and structures Advances in Multifunctional Lightweight Structures offers a text that provides and in-depth analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures. The authors, noted experts on the topic, address the most recent and innovative methodologies for the characterization and modelling of lightweight materials and discuss various shell and plate theories. They present multifunctional materials and structures and offer detailed descriptions of the complex modelling of these structures. The text is divided into three sections that demonstrate a keen understanding and awareness for multi-functional lightweight structures by taking a unique approach. The authors explore multi-disciplinary modelling and characterization alongside benchmark problems and applications, topics that are rarely approached in this field. This important book: • Offers an analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures • Covers innovative methodologies for the characterization and modelling of lightweight materials and structures • Presents a characterization of a wide variety of novel materials • Considers multifunctional novel structures with potential applications in different high-tech industries • Includes efficient and highly accurate methodologies Written for professionals, engineers and researchers in industrial and other specialized research institutions, Advances in Multifunctional Lightweight Structures offers a much needed text to the design practices of existing engineering building services and how these methods combine with recent developments.

Mechanical Properties of Ceramics

Mechanical Properties of Ceramics
Author: John B. Wachtman
Publisher: John Wiley & Sons
Total Pages: 496
Release: 2009-08-13
Genre: Technology & Engineering
ISBN: 9780470451502

A Comprehensive and Self-Contained Treatment of the Theory and Practical Applications of Ceramic Materials When failure occurs in ceramic materials, it is often catastrophic, instantaneous, and total. Now in its Second Edition, this important book arms readers with a thorough and accurate understanding of the causes of these failures and how to design ceramics for failure avoidance. It systematically covers: Stress and strain Types of mechanical behavior Strength of defect-free solids Linear elastic fracture mechanics Measurements of elasticity, strength, and fracture toughness Subcritical crack propagation Toughening mechanisms in ceramics Effects of microstructure on toughness and strength Cyclic fatigue of ceramics Thermal stress and thermal shock in ceramics Fractography Dislocation and plastic deformation in ceramics Creep and superplasticity of ceramics Creep rupture at high temperatures and safe life design Hardness and wear And more While maintaining the first edition's reputation for being an indispensable professional resource, this new edition has been updated with sketches, explanations, figures, tables, summaries, and problem sets to make it more student-friendly as a textbook in undergraduate and graduate courses on the mechanical properties of ceramics.

Microwave Materials and Applications

Microwave Materials and Applications
Author: Mailadil T. Sebastian
Publisher: John Wiley & Sons
Total Pages: 997
Release: 2017-03-02
Genre: Technology & Engineering
ISBN: 1119208564

Die jüngsten Fortschritte im Bereich der drahtlosen Telekommunikation und dem Internet der Dinge sorgen bei drahtlosen Systemen, beim Satellitenfernsehen und bei intelligenten Transportsystemen der 5. Generation für eine höhere Nachfrage nach dielektrischen Materialien und modernen Fertigungstechniken. Diese Materialien bieten ausgezeichnete elektrische, dielektrische und thermische Eigenschaften und verfügen über enormes Potenzial, vor allem bei der drahtlosen Kommunikation, bei flexibler Elektronik und gedruckter Elektronik. Microwave Materials and Applications erläutert die herkömmlichen Methoden zur Messung der dielektrischen Eigenschaften im Mikrowellenbereich, die verschiedenen Ansätze zur Lösung von Problemen der Materialchemie und von Kristallstrukturen, in den Bereichen Doping, Substitution und Aufbau von Verbundwerkstoffen. Besonderer Schwerpunkt liegt auf Verarbeitungstechniken, Einflüssen der Morphologie und der Anwendung von Materialien in der Mikrowellentechnik. Gleichzeitig werden viele der jüngsten Forschungserkenntnisse bei Mikrowellen-Dielektrika und -Anwendungen zusammengefasst. Die verschiedenen Kapitel untersuchen: Oxidkeramiken für dielektrische Resonatoren und Substrate, HTCC-, LTCC- und ULTCC-Bänder für Substrate, Polymer-Keramik-Verbundstoffe für Leiterplatten, Elastomer-Keramik-Verbundstoffe für flexible Elektronik, dielektrische Tinten, Materialien für die EMV-Abschirmung, Mikrowellen-Ferrite. Ein umfassender Anhang präsentiert die grundlegenden Eigenschaften von mehr als 4000 verlustarmen dielektrischen Keramiken, deren Zusammensetzung, kristalline Struktur und dielektrischen Eigenschaften für Mikrowellenanwendungen. Microwave Materials and Applications wirft einen Blick auf sämtliche Aspekte von Mikrowellenmaterialien und -anwendungen, ein nützliches Handbuch für Wissenschaftler, Unternehmen, Ingenieure und Studenten, die sich mit heutigen und neuen Anwendungen in den Bereichen drahtlose Kommunikation und Unterhaltungselektronik beschäftigen.

Ceramic Fibers and Coatings

Ceramic Fibers and Coatings
Author: Committee on Advanced Fibers for High-Temperature Ceramic Composites
Publisher: National Academies Press
Total Pages: 112
Release: 1998-05-05
Genre: Technology & Engineering
ISBN: 0309569036

High-temperature ceramic fibers are the key components of ceramic matrix composites (CMCs). Ceramic fiber properties (strength, temperature and creep resistance, for example)-along with the debonding characteristics of their coatings-determine the properties of CMCs. This report outlines the state of the art in high-temperature ceramic fibers and coatings, assesses fibers and coatings in terms of future needs, and recommends promising avenues of research. CMCs are also discussed in this report to provide a context for discussing high-temperature ceramic fibers and coatings.

Spark Plasma Sintering

Spark Plasma Sintering
Author: Giacomo Cao
Publisher: Elsevier
Total Pages: 334
Release: 2019-06-12
Genre: Technology & Engineering
ISBN: 0128177446

Spark Plasma Sintering: Current Status, New Developments and Challenges looks at the progress made in the field of SPS. It includes a review of the scientific mechanisms, materials synthesis and industry applications for this processing technique. Chapters are written by leading experts in the field, encompassing topics surrounding the densification mechanism and microstructure evolution, the classification of high-performance materials, a review of numerical simulation, discussions of new technology advances, such as HP-SPS, flash sintering and related challenges. This book will be useful for researchers, engineers and students within the materials science and engineering fields.